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Abstract. Large-scale probabilistic knowledge bases are becoming in-
creasingly important in academia and industry alike. They are constantly
extended with new data, powered by modern information extraction tools
that associate probabilities with knowledge base facts. This tutorial is
dedicated to give an understanding of various query answering and rea-
soning tasks that can be used to exploit the full potential of probabilistic
knowledge bases. In the first part of the tutorial, we focus on (tuple-
independent) probabilistic databases as the simplest probabilistic data
model. In the second part of the tutorial, we move on to richer repre-
sentations where the probabilistic database is extended with ontological
knowledge. For each part, we review some known data complexity results
as well as discuss some recent results.
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1 Introduction

In recent years, there has been a strong interest in building large-scale proba-
bilistic knowledge bases from data in an automated way, which has resulted in
a number of systems, such as DeepDive [65], NELL [50], Reverb [27], Yago [40],
Microsoft’s Probase [75], IBM’s Watson [29], and Google’s Knowledge Vault [25].
These systems continuously crawl the Web and extract structured information,
and thus populate their databases with millions of entities and billions of tuples.
To what extent can these search and extraction systems help with real-world
use cases? This turns out to be an open-ended question. For example, Deep-
Dive is used to build knowledge bases for domains such as paleontology, geology,
medical genetics, and human movement [46, 55]; it also serves as an important
tool for the fight against human trafficking [35]. IBM’s Watson makes impact
on health-care systems [30] and many other application domains of life sciences.
Google’s Knowledge Vault has compiled more than a billion facts from the Web
and is primarily used to improve the quality of search results on the Web [26],

? This tutorial is mostly based on the dissertation work [13], and previously published
material [8, 14], and also makes use of some material from the classical literature on
probabilistic databases [68, 21].
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From a broader perspective, the quest for building large knowledge bases serves
as a new dawn for artificial intelligence (AI) research in general and for uni-
fying logic and probability in particular. Fields such as information extraction,
natural language processing (e.g., question answering), relational and deep learn-
ing, knowledge representation and reasoning, and databases are taking initiative
towards a common goal.

The most basic model to manage, store, and process large-scale probabilis-
tic data is that of tuple-independent probabilistic databases (PDBs) [68], which
indeed underlies many of these systems [25, 65]. The first part of this tutorial
is thus dedicated to give an overview on PDBs. We first recall the basics of
query answering over PDBs, and then give an overview of the data complexity
dichotomy between polynomial time and #P for evaluating unions of conjunc-
tive queries over PDBs [21]. Then, we focus on two additional inference tasks
that are inspired by maximal posterior probability computations in probabilistic
graphical models (PGMs) [44]. That is, we discuss the problems of finding the
most probable database and the most probable hypothesis for a given query, which
intuitively correspond to finding explanations for PDB queries [37, 14].

Probabilistic databases typically lack a suitable handling of incompleteness,
in practice. In particular, each of the above systems encodes only a portion of
the real-world, and this description is necessarily incomplete. However, when it
comes to querying, most of these systems employ the closed-world assumption
(CWA) [60], i.e., any fact that is not present in the knowledge base is assigned
the probability 0, and thus assumed to be impossible. It is also common practice
to view every extracted fact as an independent Bernoulli variable, i.e., any two
facts are probabilistically independent. Similarly, by the closed-domain assump-
tion (CDA) of PDBs, the domain of discourse is fixed to a finite set of known
constants, i.e., it is assumed that all individuals are known a priori. These as-
sumptions are very strong, and lead to more problematic semantic consequences,
once combined with another limitation of these systems, namely, the lack of com-
monsense knowledge, which brings us to probabilistic knowledge bases.

In the second part of this tutorial, we focus on probabilistic knowledge bases,
which are probabilistic databases that additionally allow to encode common-
sense knowledge. Note that incorporating commonsense knowledge is inherently
connected to giving up the above completeness assumptions of standard PDBs.
In the scope of this tutorial, we assume that commonsense knowledge is encoded
in the form of ontologies. There are many different models that allow for en-
coding commonsense knowledge; see e.g. [36], but most of these models, such as
MLNs [61], relational Bayesian networks [42], and function-free variants of prob-
abilistic logic programs employ the closed-domain assumption, and therefore,
do not allow fully fledged first-order knowledge, as it already occurs in (rather
restricted) ontology languages. These semantic differences have been recently
highlighted in a survey [9].

Ontologies are first-order theories that formalize domain-specific knowledge,
thereby allowing for open-world, open-domain reasoning. The most prominent
ontology languages in the literature are based on description logics (DLs) [3], and
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lately also on Datalog± [12, 11, 10] (also studied as existential rules). For a uni-
form syntactic presentation, we focus on Datalog± ontologies, but we note that,
in almost all cases, it is straight-forward to extend all the presented techniques
and results. Interpreting databases under commonsense knowledge in the form
of ontologies is closely related to ontology-based data access [56], also known
as ontology-mediated query answering (OMQA) [7]. In the second part of this
tutorial, we lift the reasoning problems introduced for probabilistic databases
to ontology-mediated queries, and give an overview of various data complexity
results.

2 Preliminaries: Logic, Databases, and Complexity

Intellectual roots of databases are in first-order logic [1]; in particular, in finite
model theory [47]. Thus, we adopt the model-theoretic perspective and view
databases as first-order structures over some fixed domain.

2.1 Logic and Notation

A relational vocabulary σ consists of sets R of predicates, C of constants, and V
of variable names (or simply variables). The function ar : R 7→ N associates with
each predicate P ∈ R a natural number, which defines the (unique) arity of P.
A term is either a constant or a variable. An atom is of the form P(s1, . . . , sn),
where P is an n-ary predicate, and s1, . . . , sn are terms. A ground atom is an
atom without variables.

A first-order formula is defined inductively by combining the logical atoms
with logical connectives ¬, ∧, ∨, and quantifiers ∃, ∀, as usual. A literal is either
an atom or its negation. A quantifier-free formula is a formula that does not
use a quantifier. A variable x in a formula Φ is quantified, or bound, if it is in
the scope of a quantifier; otherwise, it is free. A (first-order) sentence is a first-
order formula without any free variables, also called a closed formula, or Boolean
formula. A (first-order) theory is a set of first-order sentences.

Let FO be the class of first-order formulas. The class of existential first-
order formulas (∃FO) consists of first-order formulas of the form ∃x.Φ(x), where
Φ is any Boolean combination of atoms. The class of universal first-order for-
mulas (∀FO) consists of first-order formulas of the form ∀x.Φ(x), where Φ is
any Boolean combination of atoms. A disjunctive clause is a finite disjunction
of literals. A conjunctive clause is a finite conjunction of literals. The class of
formulas in existential conjunctive normal form (∃CNF) consists of first-order
formulas of the form ∃x.Φ(x); the class of formulas in universal conjunctive nor-
mal form (∀CNF) consists of first-order formulas of the form ∀x.Φ(x), where Φ
is a conjunction of disjunctive clauses. The class of formulas in existential dis-
junctive normal form (∃DNF) consists of formulas of the form ∃x.Φ(x); the class
of formulas in universal disjunctive normal form (∀DNF) consists of formulas of
the form ∀x.Φ(x), where Φ is a disjunction of conjunctive clauses. The class of
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formulas in conjunctive normal form (CNF) consists of ∃CNF and ∀CNF formu-
las. The class of formulas in disjunctive normal form (DNF) consists of ∃DNF
and ∀DNF formulas. A formula is positive if it contains only positive literals. We
also write kCNF, or kDNF, to denote the class of formulas, where k denotes the
maximal number of atoms that a clause can contain.

2.2 Databases and Query Answering

A database D over a (finite) relational vocabulary σ is a finite set of ground
atoms over σ. We follow a model-theoretic approach and view a database as
a Herbrand interpretation, where the atoms that appear in the database are
mapped to true, while the ones not in the database are mapped to false,

Note that this semantics implies the closed-world assumption (CWA) [60],
and the closed-domain assumption (CDA), i.e., restricts the domain of an inter-
pretation to a finite, fixed set of constants; namely, to database constants. As a
matter of fact, such interpretations presume that the domain is complete. Finally,
the unique name assumption (UNA) ensures a bijection between the database
constants and the domain: it is not possible to refer to the same individual in
the domain with two different constant names. These simplifying assumptions
of databases are useful for a variety of reasons. At the same time, it becomes
very easy to produce some undesirable consequences under these assumptions,
as we will elaborate. We will revisit some of these assumptions, and discuss their
implications; for a recent survey on these assumptions, see e.g. [9].

The most fundamental task in databases is query answering ; that is, given
a database D and a formula Φ(x1, . . . , xn) of first-order logic, to decide whether
there exists assignments to the free variables x1, . . . , xn such that the resulting
formula is satisfied by the database. Importantly, here, the variable assignments
are of a special type, also called substitutions. Formally, a substitution [x/t]
replaces all occurrences of the variable x by some database constant t in some
formula Φ[x, y], denoted Φ[x/t].

Given these, we can now formulate query answering as a decision prob-
lem. Let σ be a relational vocabulary; Φ(x1, . . . , xn) be a first-order formula
over σ; and D be a database over σ. Then, query answering is to decide whether
D |= Φ[x1/a1, . . . , xn/an] for a given substitution (answer) [x1/a1, . . . , xn/an] to
the free variables x1, . . . , xn. For a Boolean formula Φ, Boolean query answering
(or simply query evaluation) is to decide whether D |= Φ.

There exists a plethora of query languages in the literature. Classical database
query languages range from the well-known conjunctive queries to arbitrary first-
order queries, which we briefly introduce. A conjunctive query over σ is an exis-
tentially quantified formula ∃x.Φ(x,y), where Φ(x,y) is a conjunction of atoms
over σ. A Boolean conjunctive query over σ is a conjunctive query without free
variables. A union of conjunctive queries is a disjunction of conjunctive queries
with the same free variables. A union of conjunctive queries is Boolean if it does
not contain any free variable. The class of Boolean unions of conjunctive queries
is denoted UCQ.
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We always focus on Boolean queries unless explicitly mentioned otherwise.
Conjunctive queries are the most common database queries used in practice;
thus, they will also be emphasized in this work. Besides, note that full relational
algebra corresponds to the class of first-order formulas. Therefore, we include
fragments of the class of first-order formulas as query languages in our analysis.
In particular, we study ∃FO, ∀FO, and FO queries as query languages. Besides,
we sometimes use different syntactic forms to represent relational queries, such
as CNF or DNF.

We also speak of matches for Boolean queries. Let Q be a Boolean query
over σ, D a database over σ, and V(Q) be the set of variables that occur in Q.
A mapping ϕ : V(Q) 7→ C is called a match for the query Q in D if D |= ϕ(Q).
For existentially quantified queries, it is sufficient to find a single match, to
satisfy a given Boolean query evaluation. Conversely, for universally quantified
queries, all mappings must result in a match in order to satisfy the query.

2.3 Complexity Background

We assume some familiarity with complexity theory and refer the reader to stan-
dard textbooks in the literature [53, 66]. We now briefly introduce the complexity
classes that are most relevant to the presented results.

FP is the class of functions f : {0, 1}∗ → {0, 1}∗ computable by a polynomial-
time deterministic Turing Machine. The function class #P [71] is central for
problems related to counting. The canonical problem for #P is #SAT, that is,
given a propositional formula ϕ, the task of computing the number of satisfying
assignments to ϕ. In this tutorial, we mostly focus on decision complexity classes.
Intuitively, the complexity class PP [32] can be seen as the decision variant
of #P. Formally, PP is the set of languages recognized by a polynomial time
nondeterministic Turing machine that accepts an input if and only if more than
half of the computation paths are accepting. The canonical problem for PP
is MAJSAT, that is, given a propositional formula ϕ, the problem of deciding
whether the majority of the assignments to ϕ are satisfying. Importantly, PP
is closed under truth table reductions [6]; in particular, this implies that PP
is closed under complement, union, and intersection. PP contains NP and is
contained in PSpace.

Another class of interest is NPPP, which intuitively combines search and op-
timization problems. A natural canonical problem for this class is EMAJSAT [48],
that is, given a propositional formula ϕ and a set of distinguished variables x
from ϕ, is there an assignment µ to x-variables such that majority of the as-
signments τ that extend µ satifies ϕ. NPPP appears as a fundamental class for
probabilistic inference and planning tasks. The inclusion relationships between
these complexity classes can be summarized as follows:

P ⊆ NP ⊆ PPP = P#P ⊆ NPPP ⊆ PSpace ⊆ Exp,

where PPP = P#P is due to Toda’s result [70].
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We also make references to lower complexity classes characterized by Boolean
circuits. AC0 consists of the languages recognized by Boolean circuits with con-
stant depth and polynomial number of unbounded fan-in AND and OR gates.
TC0 consists of the languages recognized by Boolean circuits with constant
depth and a polynomial number of unbounded fan-in AND, OR, and MAJOR-
ITY gates. Unlike Turing machines, Boolean circuits are non-uniform models of
computation; that is, inputs of different size are processed by different circuits.
It is therefore common to impose some uniformity conditions that require the
existence of some resource-bounded Turing machine that, on an input, produces
a description of the individual circuit. The most widely accepted uniformity con-
dition for these classes is DLogTime-uniformity, bounding the computation in
accordance to a logarithmic-time deterministic Turing machine. For a detailed
treatment of the subject, we refer to the relevant literature [73]. The relationships
between these classes can be summarized as follows:

AC0 ⊆ TC0 ⊆ LogSpace ⊆ P

When analyzing the computational complexity, we restrict ourselves to the
data complexity throughout this tutorial, in order to achieve a more focused
presentation. As usual, the data complexity is calculated only based on the size
of the database, i.e., the query is assumed to be fixed [72].

3 Probabilistic Databases

In this section, we introduce probabilistic databases (PDBs) [68] as one of the
most basic data models underlying probabilistic knowledge bases. Our analysis
is organized in two subsections; first, we give an overview of query evaluation
methods in PDBs, and afterwards, we study maximal posterior computation
tasks, introduced for PDBs [37, 14].

We adopt the simplest probabilistic database model, which is based on the
tuple-independence assumption. For alternative models, we refer the reader to
the rich literature of probabilistic databases; see e.g. [68] and the references
therein. Tuple-independent probabilistic databases generalize classical databases
by associating every database atom with a probability value.

Definition 1. A probabilistic database (PDB) P for a vocabulary σ is a finite
set of tuples of the form 〈t : p〉 , where t is a σ-atom and p ∈ (0, 1]. Moreover,
if 〈t : p〉 ∈ P and 〈t : q〉 ∈ P, then p = q.

Table 1 shows a sample PDB Pm, where each row in a table represents
an atom that is associated with a probability value. Semantically, a PDB can
be viewed as a factored representation of exponentially many possible worlds
(classical databases), each of which has a probability to be true. Both in the
AI [63, 64, 57, 24] and the database literature [68], this is commonly referred to
as the possible worlds semantics.

In PDBs, each database atom is viewed as an independent random variable
by the tuple-independence assumption. Each world is then simply a classical
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Table 1. The PDB Pm represented in terms of database tables, where each row is
interpreted as a probabilistic atom.

StarredIn P

deNiro taxiDriver 0.7
thurman pulpFiction 0.1
travolta pulpFiction 0.3

DirectedBy P

pulpFiction tarantino 0.8
taxiDriver scorsese 0.6
winterSleep ceylan 0.8

database, which sets a choice for all database atoms in the PDB. Furthermore,
the closed-world assumption forces all atoms that are not present in the database
to have probability zero.

Definition 2. A PDB P for vocabulary σ induces a unique probability distribu-
tion PP over the set of (possible worlds) D such that

PP(D) =
∏
t∈D

PP(t)
∏
t/∈D

(1− PP(t)),

where the probability of each atom is given as

PP(t) =
{p if 〈t : p〉 ∈ P

0 otherwise.

Whenever the probabilistic database is clear from the context, we simply write
P(t), instead of PP(t). We say that a database is induced by a PDB P if it is a
possible world (with a non-zero probability) of P.

Observe that the choice of setting PP(t) = 0 for tuples missing from PDB P is
a probabilistic counterpart of the closed-world assumption. Let us now illustrate
the semantics of PDBs on a simple example.

Example 1. Consider the PDB Pm given in Table 1. The probability of the world
D1, given as

D1 := {StarredIn(deNiro, taxiDriver),DirectedBy(taxiDriver, scorsese)},

can then be computed by multiplying the probabilities of the atoms that appear
in D1 with the dual probability of the atoms that do not appear in D1 as follows

P(D1) = 0.7 · (1− 0.1) · (1− 0.3) · (1− 0.8) · 0.6 · (1− 0.8).

�

The semantics of queries is given through the possible worlds semantics,
which amounts to walking through all the possible worlds and summing over the
probabilities of those worlds that satisfy the query.
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Definition 3 (query semantics). Let Q be a Boolean query and P be a PDB.
The probability of Q in the PDB P is defined as

PP(Q) =
∑
D|=Q

PP(D),

where D ranges over all possible worlds.

In general, there are exponentially many worlds, and in some cases, it is
unavoidable to go through all of them in order to compute the probability. This
is computationally intractable, but as we shall see later, in some cases, computing
the query probability is actually easy.

Example 2. Consider again the PDB Pm. In order to evaluate the following
Boolean query

Q := ∃x, y StarredIn(x, y) ∧ DirectedBy(y, scorsese),

on Pm, we can näıvely check, for each world D, whether D |= Q. One such world
is D1, as it clearly satisfies D1 |= Q. Afterwards, we only need to sum over the
probabilities of the worlds, for which the satisfaction relation holds, in order to
obtain the probability of the query. �

In the given example, it is easy to compute the probability of the query.
Notably, this is the case for any PDB and not only for our toy PDB. The next
section is dedicated to give an understanding of easy and hard queries.

3.1 Query Evaluation in Probabilistic Databases

In this section, we provide a short overview on existing complexity results for in-
ference in (tuple-independent) probabilistic databases including a data complex-
ity dichotomy result. In our analysis, we are interested in the decision problem
of probabilistic query evaluation, as defined next.

Definition 4 (probabilistic query evaluation). Given a PDB P, a query
Q and a threshold value p ∈ [0, 1), probabilistic query evaluation, denoted PQE,
is to decide whether PP(Q) > p. PQE is parametrized with a particular query
language; thus, we write PQE(Q) to define PQE on the class of Q queries.

The data complexity of query evaluation depends heavily on the structure of
the query. In a remarkable result [21], it has been shown that the probability of
a UCQ can be computed either in FP or it is #P-hard on any PDB. Using the
usual terminology [21], we say that queries are safe if the computation problem
is in FP, and unsafe, otherwise. Probabilistic query evaluation, as defined here,
is the corresponding decision problem. It is easy to see that this problem is either
in P or it is PP-complete as a corollary to the result of [21].

Corollary 1. PQE(UCQ) is either in P or it is PP-complete for PDBs in data
complexity under polynomial-time Turing reductions.
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ỹ x̃

R

C D

(a) QNH := ∃x, y C(x) ∧ R(x, y) ∧ D(y)

x̃

ỹ

RC, D

(b) QH := ∃x, y C(x) ∧ R(x, y) ∧ D(x)

Fig. 1. Venn diagram for the queries QNH (non-hierarchical) and QH (hierarchical).

Proof. Let a UCQ Q be safe for PDBs. Then, for any PDB P, the computation
problem P(Q) uses only polynomial time. As a consequence, it is possible to
decide whether the probability exceeds a given threshold p in polynomial time.
Thus, PQE(UCQ) is in P for all safe UCQ queries.

Conversely, let a UCQQ be unsafe for PDBs. Then, the problem of computing
P(Q) on a given PDB P is #P-hard under polynomial-time Turing reductions.
Let us loosely denote by P(Q) the problem of computing P(Q). We now only show

that PP is contained in PPQE(Q), i.e., PQE(Q) is PP-hard in data complexity
under polynomial-time Turing reductions.

To show this, let A be any other problem in PP. By assumption, its compu-
tation problem, denoted #A, is contained in FPP(Q), i.e., there is a polynomial-
time Turing machine with oracle P(Q) that computes the output for #A. We
can adapt this Turing machine then to compare the output to some threshold,
which means that A is contained in PP(Q). We also know that P(Q) is con-

tained in FPPQE(Q), as we can perform a binary search over the interval [0, 1] to
compute the precise probability P(Q). This implies that A is contained in PC,

where C = FPPQE(Q). Finally, note that the intermediate oracle does not pro-
vide any additional computational power (as this computation can be performed
by the polynomial-time Turing machine and the oracle PQE(Q) can be queried

directly). This shows that A is in PPQE(Q), which proves the result. ut

We use the same terminology also for the associated decision problem: we
say that a query Q is safe if PQE(Q) is in P, and unsafe, otherwise. Historically,
a dichotomy is considered first by [34], and later, the so-called small dichotomy
result has been proven by [20], which applies to a subclass of conjunctive queries.
As it gives nice insights on the larger dichotomy result [21], we look into this
result, in more detail. The small dichotomy applies to all conjunctive queries
without self-joins, i.e., conjunctive queries with non-repeating relation symbols.
It asserts that a self-join free query is hard if and only if it is nonhierarchical,
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C(x) ∧ R(x, y) ∧ D(x)

C(b) ∧ R(b, y) ∧ D(b)

R(b, a)

C(a) ∧ R(a, y) ∧ D(a)

R(a, b)

Fig. 2. Decomposition tree of a safe query for the grounding [x/a, y/b] (left branch)
and [x/b, y/a] (right branch). Different branches of the tree do not share an atom,
which ensures independence.

and it is safe, otherwise. It is therefore crucial to understand hierarchical and
nonhierarchical queries.

Definition 5 (hierarchical queries). Let Q be a conjunctive query. For any
variable x that appears in the query Q, its x-cover, denoted x̃, is defined as the
set of all relation names that have the variable x as an argument. Two covers x̃
and ỹ are pairwise hierarchical if and only if x̃ ∩ ỹ 6= ∅ implies x̃ ⊆ ỹ or ỹ ⊆ x̃.
A query Q is hierarchical if every cover x̃, ỹ is pairwise hierarchical ; otherwise,
it is called nonhierarchical.

Let us consider the query QNH := ∃x, y C(x) ∧ R(x, y) ∧ D(y). It is easy to see
that this query is not hierarchical, since the relation R occurs in both covers x̃
and ỹ (as depicted in Figure 1a). This simple join query is already unsafe, as
shown in [20].

Theorem 1 (Thm.7,[20]). QNH is unsafe.

Proof. We provide a reduction from the model counting problem, that is, given
a propositional formula ϕ, the problem of computing the model count of ϕ, de-
noted #ϕ. Provan and Ball [58] showed that computing #ϕ is #P-complete (un-
der Turing reductions) even for bipartite monotone 2DNF Boolean formulas ϕ,
i.e., when the propositional variables can be partitioned into X = x1, . . . , xm
and Y = y1, . . . , yn such that ϕ = c1 ∨ · · · ∨ cl, where each clause ci has the form
xj ∧ yk, xj ∈ X, yk ∈ Y .

Given ϕ, we define the probabilistic database Pϕ, which contains the atoms
〈C(x1) : 0.5〉, . . . , 〈C(xm) : 0.5〉, 〈D(y1) : 0.5〉, . . . , 〈D(yn) : 0.5〉, and for every
clause (xj ∧ yk) an atom 〈R(xj , yk) : 1〉. It is then easy to verify that #ϕ =
P(QNH) · 2m+n, which concludes the result. ut

Similar reductions can be obtained for all (self-join free) conjunctive queries that
are non-hierarchical. Note, however, that removing any of the atoms from QNH

results in a safe query. For example, the query ∃x, y C(x) ∧ R(x, y) is hierar-
chical and thus safe. The query QH := ∃x, y C(x) ∧ R(x, y) ∧ D(x), as shown in
Figure 1b, is yet another example of a safe query.
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C(x) ∧ R(x, y) ∧ D(y)

C(b) ∧ R(b, y) ∧ D(y)︸ ︷︷ ︸
!

R(b, a)

C(a) ∧ R(a, y) ∧ D(y)︸ ︷︷ ︸
!

R(a, b)

Fig. 3. Decomposition tree of an unsafe query for the grounding [x/a, y/b] (left branch)
and [x/b, y/a] (right branch). Different branches of the tree share D-atoms, which makes
them dependent.

The intuition behind a safe query is the query being recursively decomposable
into sub-queries such that each such sub-query is probabilistically independent.
Let us consider the query QH, as it admits a decomposition, and is safe. We can
first ground over x, which results in a query of the form ∃y C(a) ∧ R(a, y) ∧ D(a)
for a grounding [x/a]. The atoms in the resulting query do not share a relation
name or a variable, and since we additionally assume tuple independence, it
follows that the probability of each atom is independent. Thus, their probabilities
can be computed separately and combined afterwards using appropriate rules of
probability.

Note that our observation for the independence is also valid for all differ-
ent groundings of QH. For example, the groundings QH[x/a] and QH[x/b], are
probabilistically independent, since after applying a grounding over y, we obtain
mutually disjoint sets of ground atoms. That is, once x is mapped to different
constants, then all mappings for y will result in different sets of atoms. As a
result, their probabilities can be computed separately and combined afterwards.
The decomposition of the safe query QH is depicted in Figure 2 in terms of a tree.
The key ingredient in this example is related to the variable x, which serves as a
separator variable in the first place and allows us to further simplify the query.

Definition 6 (separator variable). Let Q be a first-order query. A variable
x in Q is a separator variable if x appears in all atoms of Q and for any two
different atoms of the same relation R, the variable x occurs in the same position.

Note that the query QNH has no separator variable, since neither x nor y
serve as a separator variable. Intuitively, this means that the query cannot be
decomposed into independent sub-queries. For example, two different ground-
ings QNH[x/a] and QNH[x/b] are not independent for QNH, since they do not
necessarily result in mutually exclusive sets of atoms once grounded over y, as
shown in Figure 3. The small dichotomy theorem uses other rules of probability
theory to further simplify the query, and we illustrate this on an example.

Example 3. Consider the hierarchical query QH := ∃x, y C(x) ∧ R(x, y) ∧ D(x).
To compute the probability of QH, we first apply the decomposition based on
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the seperator variable x, which yields

P(QH) = 1−
∏
c∈C

P(∃y C(c) ∧ R(c, y) ∧ D(c)),

Here, c ranges over the database constants, and the probability of the resulting
expression can be computed by decomposing the conjunctions as

P(∃y C(c) ∧ R(c, y) ∧ D(c)) = P(C(c)) · P(∃y R(c, y)) · P(D(c)).

The probabilities of the ground atoms C(c), D(c) can be read off from the given
probabilistic database; thus, it only remains to apply the grounding in R(c, y),
which results in

P(∃y R(c, y)) = 1−
∏
d∈C

P(R(c, d)).

�

The dichotomy for unions of conjunctive queries is much more intricate and
a characterization of safe queries is unfortunately not easy. Thus, an algorithm
is given in [21] to compute the probability of all safe queries by recursively
applying the simplification rules on the query. This algorithm is complete, i.e.,
when the algorithm fails on the query, then the query is unsafe. Later, a lifted
inference algorithm, called LiftR, was proposed in [38], which was also proven to
be complete. Afterwards, this algorithm has also been extended to an open-world
semantics in [15], where it has also been noted that this algorithm runs in linear
time for PDBs in the size of the database, under reasonable assumptions, such as
unit arithmetic cost assumption for all arithmetic operations. For full details on
different algorithms and their properties, we refer to the relevant literature [21,
38, 15, 13].

3.2 Maximal Posterior Computations for Probabilistic Databases

Forming the foundations of large-scale knowledge bases, probabilistic databases
have been widely studied in the literature. In particular, probabilistic query
evaluation has been investigated intensively as a central inference mechanism.
However, despite its power, query evaluation alone cannot extract all the relevant
information encompassed in large-scale knowledge bases.

To exploit this potential, two additional inference tasks are proposed [37, 14],
namely, finding the most probable database and the most probable hypothesis for
a given query, both of which are inspired by maximal posterior probability com-
putations in probabilistic graphical models (PGMs) [44]. Let us briefly explain
why probabilistic query evaluation alone may not be sufficient on the following
example.

Example 4. Consider the PDB Pv given in Table 2 and the conjunctive query

Qfr = ∃x, y Qveg(x) ∧ FriendOf(x, y) ∧Qveg(y).
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Table 2. The probabilistic database Pv encodes dietary regimes of some individuals,
and the friendship relation among those individuals.

Vegetarian

alice 0.7
bob 0.9
chris 0.6

FriendOf

alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats

bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat

shrimp 0.7
mussels 0.9
seahorse 0.3

In the given PDB, alice, bob, and chris are all vegetarians and friends with each
other with some probability. We can now ask the probability of vegetarians being
friends with vegetarians. The query

Qfr[x/bob] = ∃y Qveg(bob) ∧ FriendOf(bob, y) ∧Qveg(y)

is a special case of Qfr, which asks whether bob has vegetarian friends. Its prob-
ability can be computed as P(Qfr[x/bob]) = 0.9 · 0.1 · 0.6 = 0.054.

Suppose now that we observe that Qfr[x/bob] is true and would like to
learn what best explains this observation relative to the underlying probabilistic
database. To be able to explain such an observation, we need different inference
tasks than probabilistic query answering. �

The most probable database problem (analogous to most probable explana-
tions (MPE) in PGMs), first proposed in [37], is the problem of determining the
(classical) database with the largest probability that satisfies a given query. Intu-
itively, the query defines constraints on the data, and the goal is to find the most
probable database that satisfies these constraints. The most probable hypothe-
sis problem (analogous to maximum a posteriori problems (MAP) in PGMs),
first proposed in [14], only asks for partial databases satisfying the query. The
most probable hypothesis contains only atoms that contribute to the satisfaction
condition of the query, which allows to more precisely pinpoint the most likely
explanations of the query.

The Most Probable Database Problem. The need for alternative inference
mechanisms for probabilistic knowledge bases has been observed before, and the
most probable database problem has been proposed in [37] as follows.

Definition 7. Let P be a probabilistic database and Q a query. The most prob-
able database for Q over P is given by

arg max
D|=Q

P(D),

where D ranges over all worlds induced by P.

Intuitively, a probabilistic database defines a probability distribution over ex-
ponentially many classical databases, and the most probable database is the ele-
ment in this collection that has the highest probability, while still satisfying the
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Table 3. The most probable database for the query Qfr over the PDB Pv.

Vegetarian

alice 0.7

bob 0.9

chris 0.6

FriendOf

alice bob 0.7

alice chris 0.8

bob chris 0.1

Eats

bob spinach 0.7

chris mussels 0.8

alice broccoli 0.2

Meat

shrimp 0.7

mussels 0.9

seahorse 0.3

given query. This can be seen as the best instantiation of a probabilistic model,
and hence analogous to most probable explanation in Bayesian networks [23].
We illustrate the most probable database on our running example.

Example 5. Consider the given PDB Pv. We can now filter the most probable
database that satisfies the query

Qfr = ∃x, y Qveg(x) ∧ FriendOf(x, y) ∧Qveg(y).

Intuitively, the atoms Vegetarian(alice), Vegetarian(bob), and FriendOf(alice, bob)
need to be included in the most probable database, as they satisfy the query with
the highest probability (compared to other possible matches). Since the query
is monotone, for the remaining atoms, we only need to decide whether including
them results in a higher probability than excluding them, which amounts to
deciding whether their probability is greater than 0.5. Table 3 shows the most
probable database for Qfr over the PDB Pv, where all atoms that belong to the
most probable database are highlighted. �

Identifying the most probable database in this example is rather straight-
forward, and as we shall see later, this is tightly related to the query language
that is considered. We now illustrate that identifying the most probable database
can be more cumbersome if we consider other query languages; in particular, ∀FO
queries.

Example 6. Consider again the PDB Pv and the query

Qveg = ∀x, y ¬Vegetarian(x) ∨ ¬Eats(x, y) ∨ ¬Meat(y),

which defines the constraints of being a vegetarian, which is violated by the
atoms Vegetarian(chris), Eats(chris,mussels), and Meat(mussels). Therefore, the
most probable database for Qveg cannot contain all three of them, i.e., one of
them has to be removed (from the explanation). In this case, it is easy to see
that Vegetarian(chris) needs to be removed, as it has the lowest probability among
them. Thus, the most probable database (in this case unique) contains all atoms
of Pv that have a probability above 0.5, except for Vegetarian(chris).

Suppose now that we have observed Qfr[x/bob], and we are interested in
finding an explanation for this observation under the constraint of Qveg, which
is specified by the query

Qvf = Qfr[x/bob] ∧Qveg.
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Table 4. The most probable database for the query Qvf over the PDB Pv.

Vegetarian

alice 0.7

bob 0.9

chris 0.6

FriendOf

alice bob 0.7

alice chris 0.8

bob chris 0.1

Eats

bob spinach 0.7

chris mussels 0.8

alice broccoli 0.2

Meat

shrimp 0.7

mussels 0.9

seahorse 0.3

Observe that Vegetarian(chris) and FriendOf(bob, chris) must be in the explana-
tion to satisfy Qfr[x/bob]. Moreover, either Eats(chris,mussels) or Meat(mussels)
has to be excluded from the most probable database, since otherwise Qveg will
be violated. The resulting most probable database is highlighted in Table 4. �

The most probable database is formulated as a decision problem as follows.

Definition 8 (MPD). Let Q be a query, P a probabilistic database, and p ∈
(0, 1] a threshold. MPD is the problem of deciding whether there exists a data-
base D that satisfies Q with P(D) > p. MPD is parametrized with a particular
query language; thus, we write MPD(Q) to define MPD on the class Q of queries.

The first result that we present concerns the well-known class of unions of
conjunctive queries: MPD can be solved using at most logarithmic space and
polynomial time. More precisely, it is possible to encode the MPD problem uni-
formly into a class of TC0 circuits.

Theorem 2. MPD(UCQ) is in DLogTime-uniform TC0 in data complexity.

Proof. Let P be a PDB, Q a UCQ, and p ∈ [0, 1) a threshold value. In principle,
we can enumerate all the databases induced by the PDB P and decide whether
there is a database that satisfies Q and has a probability greater or equal than
p. This would require exponential time, as there are potentially exponentially
many databases (worlds) induced by a probabilistic database. Fortunately, this
can be avoided, as the satisfaction relation for unions of conjunctive queries is
monotone: once a database satisfies a UCQ, then any superset of this database
will satisfy the UCQ. We can, therefore, design an algorithm, which initiates the
database with the atoms resulting from a match for the query (where the match
is over the atoms that appear with a positive probability in the PDB P) and
extends this to a database with maximal probability, as follows: it adds only
those atoms from the PDB P to the database that appear with a probability
higher than 0.5, ensuring to obtain the database with the maximal probability.
As a consequence, all these databases satisfy Q and if, furthermore, there is
a database D among them with P(D) ≥ p, then the algorithm answers yes;
otherwise, it answers no.

It is easy to see that this algorithm is correct. However, if performed näıvely,
as described, it results in a polynomial blow-up: there are polynomially many
matches for the query (in data complexity), and for each match, constructing
a database requires polynomial time and space. Observe, on the other hand,
that we can uniformly access every match through an AC0 circuit, and we can
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avoid explicitly constructing a database for each such match. More concretely,
since we are only interested in the probability of the resulting database, we can
perform an iterated multiplication over the probabilities of the individual atoms:
if 〈a : q〉 ∈ P, where q > 0.5, we multiply with q, otherwise, we multiply with
1−q. We can perform such iterated multiplication with TC0 circuits that can be
constructed in DLogTime [39]. Finally, it is sufficient to compare the resulting
number with the threshold value p. This last comparison operation can also be
done using uniform AC0 circuits. This puts MPD(UCQ) in DLogTime-uniform
TC0 in data complexity. ut

This low data complexity result triggers an obvious question: what are the
sources of tractability? The answer is partially hidden behind the fact that the
satisfaction relation for unions of conjunctive queries is monotone. This allows us
to reduce the search space to polynomially many databases, which are obtained
from different matches of the query, in a unique way. Is the monotonicity a strict
requirement for tractability? It turns out that the TC0 upper bound can be
strengthened towards all existential queries, i.e., existentially quantified formulas
that allow negations in front of query atoms.

Theorem 3. MPD(∃FO) is in DLogTime-uniform TC0 in data complexity.

Proof. Let P be a PDB, Q a ∃FO query, and p ∈ [0, 1) a threshold value. Anal-
ogously to the proof of Theorem 2, we can design an algorithm that initiates
the database with the positive atoms from a match, while now also keeping the
record of the negative atoms from this match. We can again enumerate all the
matches, and for each such match, perform an iterated multiplication over the
probabilities of the atoms. The only difference is that now we need to exclude
the atoms from the database that appear negatively in the match to ensure the
satisfaction of the query. Thus, for all probabilistic atoms 〈a : q〉 ∈ P, we check
whether ¬a appears in the match, and if so, then we multiply with 1− q; other-
wise, we check whether q > 0.5 and multiply with q, if this test is positive, and
multiply with 1 − q, if this test is negative. It is then sufficient to compare the
result of each multiplication with the threshold value p: if one of the resulting
multiplications is greater than or equal to p, then the algorithm answers yes,
otherwise, it answers no. It is easy to verify the correctness of this algorithm.

By similar arguments as in the proof of Theorem 2, we can check the matches
in AC0, perform the respective multiplications in TC0 and the respective com-
parisons in AC0. Thus, MPD(∃FO) is in DLogTime-uniform TC0 in data com-
plexity. ut

In some sense, the presented tractability result implies that nonmonotonicity
is not harmful if we restrict our attention to existential queries. This is because
the nonmonotonicity involved here is of a limited type and does not lead to a
combinatorial blow-up. This picture changes once we focus on universally quan-
tified queries: nonmonotonicity combined with universal quantification creates
nondeterministic choices, which we use to prove an NP-hardness result for the
most probable database problem. We note that this result is very similar to the
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hardness result obtained in [37], only on a different query. Additionally, we show
that the complexity bound is tight even if we consider FO queries.

Theorem 4. MPD(∀FO) is NP-complete in data complexity, and so is MPD(FO).

Proof. We first show that MPD(FO) can be solved in NP. Let P be a PDB, Q a
FO query, and p ∈ [0, 1) a threshold value. To solve the decision problem, we first
guess a world D, and then verify both that the query is satisfied, i.e., D |= Q,
and that the threshold is met, i.e., P(D) ≥ p. Note that all these computations
can be done using a nondeterministic Turing machine, since only the first step is
nondeterministic, and both of the verification steps can be done in polynomial
time in data complexity.

To prove hardness, we provide a reduction from the satisfiability of propo-
sitional 3CNF formulas. Let ϕ =

∧
i ϕi be a propositional formula in 3CNF. We

define the ∀FO query

QSAT := ∀x, y, z ( L(x) ∨ L(y) ∨ L(z) ∨ R1(x, y, z)) ∧
(¬L(x) ∨ L(y) ∨ L(z) ∨ R2(x, y, z)) ∧
(¬L(x) ∨ ¬L(y) ∨ L(z) ∨ R3(x, y, z)) ∧
(¬L(x) ∨ ¬L(y) ∨ ¬L(z) ∨ R4(x, y, z)) ,

which is later used to encode the satisfaction conditions of ϕ. Without loss of
generality, we denote with u1, . . . , un the propositional variables that appear
in ϕ.

We then define the PDB Pϕ, depending on ϕ, as follows. For each proposi-
tional variable uj , we add the probabilistic atom 〈L(uj) : 0.5〉 to the PDB Pϕ.
The clauses ϕj are described with the help of the predicates R1, . . . , R4, each
of which corresponds to one type of clause. For example, if we have the clause
ϕi = x1 ∨¬x2 ∨¬x4, we add the atom 〈R3(x4, x2, x1) : 0〉 to PΦ, which enforces
via QSAT that either ¬L(x4), or ¬L(x2), or L(x1) holds. All other R-atoms that do
not correspond in such a way to one of the clauses are added with probability 1
to PΦ.

The construction provided for QSAT and Pϕ is clearly polynomial. Further-
more, the query is fixed, and only Pϕ depends on ϕ. We now show that MPD
can be used to answer the satisfiability problem of ϕ, using this construction.

Claim. The 3CNF formula ϕ is satisfiable if and only if there exists a database D
induced by Pϕ such that P(D) ≥ (0.5)n and D |= QSAT (where n is the number
of variables appearing in ϕ).

To prove the claim, suppose that ϕ is satisfiable, and let µ be such a satisfying
assignment. We define a world D such that it contains all the atoms of the form
L(uj) if and only if µ(uj) 7→ 1 in the given assignment. Moreover, D contains
all the atoms that are assigned the probability 1 in Pϕ. It is easy to see that D
is one of the worlds induced by Pϕ. Observe further that Pϕ contains n nonde-
terministic atoms, each with 0.5 probability. By this argument, the probability
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of D is clearly (0.5)n. It only remains to show that D |= QSAT, which is easy to
verify.

For the other direction, let D |= QSAT and P(D) ≥ (0.5)n for some world D.
We define an assignment µ by setting the truth value of uj to 1, if L(uj) ∈ D, and
to 0, otherwise. Every world contains exactly one assignment for every variable,
by our construction. Thus, the assignment µ is well-defined. It is easy to verify
that µ |= ϕ. ut

This concludes our analysis for the most probable database problem in the
context of PDBs, and this problem is revisited later for ontology-mediated queries.

The Most Probable Hypothesis Problem. The most probable database
identifies the most likely state of a probabilistic database relative to a query.
However, it has certain limitations, which are analogous to the limitations of
finding the most probable explanations in PGMs [44]. Most importantly, one is
always forced to choose a complete database although the query usually affects
only a subset of the atoms. That is, it is usually not the case that the whole
database is responsible for the goal query to be satisfied. To be able to more
precisely pinpoint the explanations of a query, the most probable hypothesis is
introduced [14].

Definition 9. The most probable hypothesis for a query Q over a PDB P is

arg max
H|=Q

∑
D|=H

P(D),

where H ranges over sets of atoms t and negated atoms ¬t such that t occurs
in P, and H |= Q holds if and only if all worlds induced by P that satisfy H also
satisfy Q.

Intuitively, the most probable hypothesis contains atoms only if they con-
tribute to the satisfaction of the query, that is, the most probable hypothesis is
a partial explanation. It is still the case that an explanation has to satisfy the
query, but to do so, it does not need to make a decision for all the database
atoms. Indeed, it is possible to specify some positive and negative atoms that
ensure the satisfaction of the query, regardless of the truth value of the remaining
database atoms.

Conversely, any database D with D |= H must satisfy Q, and thus the most
probable database can be seen as a special case of the most probable hypothesis
that has to contain all atoms from a PDB (positively or negatively). We denote
the sum inside the maximization, i.e., the probability of the explanation by P(H).
Differently from PGMs, the probability of the explanation can be computed by
simply taking the product of the probabilities of the (negated) atoms in H. This
is a consequence of the independence assumption and influences the complexity
results, as we elaborate later.
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Table 5. The most probable hypothesis for the query Qvf over Pv.

Vegetarian

alice 0.7

bob 0.9

chris 0.6

FriendOf

alice bob 0.7

alice chris 0.8

bob chris 0.1

Eats

bob spinach 0.7

chris mussels 0.8

alice broccoli 0.2

Meat

shrimp 0.7

mussels 0.9

seahorse 0.3

Example 7. Consider again our running example with the PDB Pv and recall
the query Qvf := Qveg ∧Qfr[x/bob], where

Qveg := ∀x, y ¬Vegetarian(x) ∨ ¬Eats(x, y) ∨ ¬Meat(y),

Qfr[x/bob] :=∃y Qveg(bob) ∧ FriendOf(bob, y) ∧Qveg(y).

Recall that the most probable database for Qvf contains many redundant atoms.
The most probable hypothesis H for the query Qvf contains only 4 atoms, as
given in Table 5: as before, light gray highlighting denotes positive atoms, while
the dark gray one denotes negated atoms, i.e., ¬Eats(chris,mussels). Note that
all of these atoms directly influence the satisfaction of the query and thus are
part of the explanation. Since the most probable hypothesis contains less atoms,
it is more informative than the most probable database. We can compute the
probability of the hypothesis by P(H) = 0.9 · 0.6 · 0.1 · (1− 0.8) = 0.0108. �

Whereas the most probable database represents full knowledge about all
facts, which corresponds to the common closed-world assumption for (probabilis-
tic) databases, the most probable hypothesis may leave atoms of P unresolved,
which can be seen as a kind of open-world assumption (although the atoms that
do not occur in P are still false). MPH is defined as a decision problem as follows.

Definition 10 (MPH). Let Q be a query, P a PDB, and p ∈ (0, 1] a threshold.
MPH is the problem of deciding whether there exists a hypothesis H that satis-
fies Q with P(H) ≥ p. MPH is parametrized with a particular query language;
thus, we write MPH(Q) to define MPH on the class Q of queries.

We again start our analysis with unions of conjunctive queries and show
that, as is the case for MPD, MPH can also be solved using at most logarithmic
space and polynomial time.

Theorem 5. MPH(UCQ) is in DLogTime-uniform TC0 in data complexity.

Proof. Let P be a PDB, Q a UCQ, and p ∈ [0, 1) a threshold value. It has
already been observed that the satisfaction relation for unions of conjunctive
queries is monotone, i.e., the fact that once a database satisfies a UCQ, then any
superset of this database satisfies the UCQ. Clearly, this also applies to partial
explanations: the databases extending the hypothesis H satisfy the query only if
H (extended with all atoms that have probability 1) is already a match for the
query. This means that the hypothesis must be a subset of a ground instance of
one of the disjuncts of the UCQ Q. The major difference from MPD is that, once
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the explanation is found, we do not need to consider the other database atoms
in the PDB. As before, there are only polynomially many such hypotheses in
the data complexity, and they can be encoded uniformly into AC0 circuits, as in
the proof of Theorem 2. Moreover, their probabilities can be computed in TC0

and the comparison with the threshold p can be done again in AC0. This puts
MPH(UCQ) in DLogTime-uniform TC0 in data complexity. ut

Recall that, for MPD, it was possible to generalize the data tractability result
from unions of conjunctive queries to existential queries. It is therefore interesting
to know whether the same holds for MPH. Does MPH remain tractable if we
consider existential queries? The answer is unfortunately negative: to be able to
verify a test such as H |= Q, we need to make sure that all extensions D of H
satisfy the query and this test is hard, once we allow negations in front of query
atoms. We illustrate the effect of negations on a simple example.

Example 8. Consider the following ∃FO query

Q := ∃x, y (A(x) ∧ ¬B(x, y)) ∨ (¬A(x) ∧ ¬B(x, y)).

To decide MPH on an arbitrary PDB, we could walk through all (partial) matches
for the query and then verify H |= Q. However, observe that this verification is
not in polynomial time, in general, as there are interactions between the query
atoms and these interactions need to be captured by the explanation itself. For
instance, the A-atoms in Q are actually redundant, and it is enough to find an
explanation that satisfies ∃x, y ¬B(x, y) for some mapping. �

The next result is for existential queries, and via a reduction from the validity
problem of 3DNF formulas, it shows that MPH is coNP-hard for these queries.
It is easy to see that this is also a matching upper bound.

Theorem 6. MPH(∃FO) is coNP-complete in data complexity.

Proof. Let P be a PDB, Q an ∃FO query, and p ∈ [0, 1) a threshold value. As
for membership, consider a nondeterministic Turing machine, which enumerates
all partial matches forming the hypothesis H and answers yes if and only if
P(H) ≥ p and there is no database D that satisfies D |= H while D 6|= Q.

To prove hardness, we provide a reduction from the validity of propositional
3DNF formulas. Let ϕ =

∨
i ϕi be a propositional formula in 3DNF. We first

define the following ∃FO query

QVAL := ∃x, y, z ( L(x) ∧ L(y) ∧ L(z) ∧ R1(x, y, z)) ∨
(¬L(x) ∧ L(y) ∧ L(z) ∧ R2(x, y, z)) ∨
(¬L(x) ∧ ¬L(y) ∧ L(z) ∧ R3(x, y, z)) ∨
(¬L(x) ∧ ¬L(y) ∧ ¬L(z) ∧ R4(x, y, z)) ,

which is later used to encode the validity conditions of ϕ. Without loss of gener-
ality, let us denote with u1, . . . , un the propositional variables that appear in ϕ.
We then define the PDB Pϕ, depending on ϕ, as follows.
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– For each propositional variable uj , we add the probabilistic atom 〈L(uj) : 0.5〉
to the PDB Pϕ.

– The conjuncts ϕj are described with the help of the predicates R1, . . . , R4,
each of which corresponds to one type of conjunct. For example, if we have
a clause ϕj = u1 ∧ ¬u2 ∧ ¬u4, we add the atom 〈R3(u4, u2, u1) : 1〉 to PΦ,
which enforces via QVAL that the conjunct that includes all atoms ¬L(u4),
¬L(u2), and L(u1) can be true. All other atoms Ri(uk, ul, um) that do not
correspond in such a way to one of the clauses are added with probability 0
to PΦ.

The construction provided for QVAL and Pϕ is clearly polynomial. Furthermore,
the query is fixed, and only Pϕ depends on ϕ. We now show that MPH can be
used to answer the validity problem of ϕ, using this construction.

Claim. The 3DNF formula ϕ is valid if and only if there exists a hypothesis H
over PΦ such that P(H) ≥ 1 and H |= QVAL.

To prove the claim, suppose that ϕ is valid. We show that the empty hypothesis
H = ∅ satisfies both P(H) ≥ 1 and H |= QVAL. It is easy to see that P(H) =
1 in Pϕ, as it encodes all possible databases, i.e., worlds. Let us assume by
contradiction that there exists a database D that extends the hypothesis,H |= D,
but does not satisfy the query, i.e., D 6|= QVAL. Then, we can use this database
to define a valuation for the given propositional formula: define an assignment
µ by setting the truth value of uj to 1, if L(uj) ∈ D, and to 0, otherwise. Every
world contains exactly one assignment for every variable, by our construction.
Thus, the assignment µ is well-defined. But then it is easy to see that this implies
µ 6|= ϕ, which contradicts the validity of ϕ.

For the other direction, let H be a hypothesis such that P(H) ≥ 1 and
H |= QVAL. This can only be the case if the H is the empty set (as otherwise
P(H) ≤ 0.5). This means that any database D induced by Pϕ must satisfy the
query. It is easy to see that every database is in one-to-one correspondence with
a propositional assignment; thus, we conclude the validity of QVAL. ut

Having shown that MPH is harder than MPD for existential queries, one may
wonder whether this is also the case for universal queries. We now show that
MPH has the same complexity as MPD for universal queries.

Theorem 7. MPH(∀FO) is NP-complete in data complexity.

Proof. NP-hardness can be obtained analogously to the proof of Theorem 4,
and we leave the hardness proof as an exercise, and focus on the upper bound
which is not as straight-forward. Let P be a PDB, Q a ∀FO query, and p ∈
[0, 1) a threshold value. To show membership, we nondeterministically guess a
hypothesis H such that the satisfaction relation H |= Q is ensured. To do so,
assume without loss of generality that the universal query is of the form

Q := ∀x1, . . . , xn
∧
i

qi(x1, . . . , xn),
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for some finite numbers i, n > 0, where each qi(x1, . . . , xn) is a clause over
x1, . . . , xn. Our goal is to find a hypothesis that satisfies this query and that
meets the threshold value p. To satisfy a universal query, we need to identify
all database atoms that could possibly invalidate the query and rule them out.
Thus, we consider the negation of the given query

¬Q = ∃x1, . . . , xn
∨
i

¬qi(x1, . . . , xn),

which encodes all database atoms that could possibly invalidate the original
query Q. Furthermore, to make the effect of the database atoms more concrete,
we consider all possible groundings of this query. Let us denote by

¬Q[x1/a1, . . . xn/an]

a grounding with database constants ai. There are polynomially many such
groundings in data complexity. We need to ensure that none of the clauses in any
of the groundings is satisfied by the hypothesis. Note that this can be achieved
by including, for every clause, an atom into the hypothesis that contradicts the
respective clause. For example, suppose that a grounding of the query is

(A(a) ∧ ¬B(b)) ∨ . . . ∨ (¬C(c) ∧ ¬D(d)).

Then, for the first clause, we have to either add the atom ¬A(a) or the atom B(b)
to the hypothesis, and similarly for the last clause. The subtlety is that we cannot
deterministically decide which atoms to include into the hypothesis (as there are
interactions across clauses as well as across different groundings). Therefore, we
nondeterministically guess each such choice. In essence, while constructing the
hypothesis, we rule out everything that could invalidate the original query. As a
consequence, we ensure that H |= Q. It only remains to check whether P(H) ≥ p,
which can be done in polynomial time. Thus, we obtain an NP upper bound in
data complexity. ut

MPH is coNP-complete for ∃FO queries (by Theorem 6) and NP-complete
for ∀FO queries (by Theorem 7). By considering a particular query, which com-
bines the power of existential and universal queries, it becomes possible to show
ΣP

2 -hardness for MPH.

Theorem 8. MPH(FO) is ΣP
2 -complete in data complexity.

Proof. Let P be a PDB, Q a FO query, and p ∈ [0, 1) a threshold value. Consider
a nondeterministic Turing machine with a (co)NP oracle: given a PDB P, a
first-order query Q, and a threshold p ∈ (0, 1], we can decide whether there
exists a hypothesis H such that P(H) ≥ p by first guessing a hypothesis H,
and verifying whether (i) P(H) ≥ p and (ii) for all databases D that extend H
and are induced by P, it holds that D |= Q. Verification of (i) can be done in
deterministic polynomial time, and (ii) can be done in coNP (the complement
is equivalent to the existence of an extension D and a valuation for the query
variables that falsifies Q). This shows that MPH(FO) is in ΣP

2 in data complexity.
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As for hardness, we provide a reduction from validity of quantified Boolean
formulas of the form Φ = ∃u1, . . . , un∀v1, . . . , vm ϕ, where ϕ is in 3DNF. Check-
ing validity of such formulas is known to be ΣP

2 -complete. For the reduction,
we consider the following query Q = QVAL ∧ Qs, where QVAL is the ∃FO query
from Theorem 6 that encodes the validity conditions, and Qs is a ∀FO query
defined as

Qs := ∀x (¬E(x) ∧ L(x)) ∨ (E(x) ∧ ¬L(x)) ∨ F(x).

Moreover, we define a PDB PΦ such that

– for each variable u that appears in ϕ, PΦ contains the atom 〈L(u) : 0.5〉;
– for each existentially quantified variable uj , PΦ has the atom 〈E(uj) : 0.5〉;
– for every universally quantified variable vj , PΦ contains the atom 〈F(vj) : 1〉;
– every conjunction in ϕ is described with the help of the predicates R1, . . . ,
R4, each of which corresponds to one type of conjunctive clause. For example,
if we have ϕj = u1 ∧ ¬u2 ∧ ¬u4, we add the atom 〈R3(u4, u2, u1) : 1〉 to PΦ,
which enforces via QVAL that the clause that includes all atoms ¬L(u4),
¬L(u2), and L(u1) can be true. Moreover, all the remaining Ri-atoms have
probability 0.

In this construction, QVAL encodes the 3DNF, and Qs helps us to distinguish
between the existentially and universally quantified variables through the E- and
F-atoms.

Claim. The quantified Boolean formula Φ is valid if and only if there exists a
hypothesis H over PΦ such that P(H) ≥ (0.5)2n and H |= Q.

Suppose that Φ is valid. Then, there exists a valuation µ of u1, . . . , un, such that
all valuations τ that extend this partial valuation (by assigning truth values
to v1, . . . , vm) satisfy ϕ. We define a hypothesis H depending on µ as follows.
For all assignments uj 7→ 1 in µ, we add L(uj) to H; if, on the other hand,
uj 7→ 0 in µ, we add ¬L(uj) to H. Moreover, to satisfy the query Qs, for every
L(uj) ∈ H, we add ¬E(uj) to H, and analogously, for every ¬L(uj) ∈ H, we add
E(uj) to H. By this construction, there are clearly 2n atoms in H, each of which
has the probability 0.5 in Pϕ. Hence, it holds that P(H) = (0.5)2n. Finally, it is
sufficient to observe that all databases D that extendHmust satisfy the query Q,
as every such database is in one-to-one correspondence with a valuation τ that
extends µ.

For the other direction, we assume that there exists a hypothesis H over PΦ
such that P(H) ≥ (0.5)2n and H |= Q. This implies that H contains at most 2n
atoms that have probability 0.5 in Pϕ (and possibly some deterministic atoms).
Furthermore, since H |= Qs, we know that H contains each E-atom either posi-
tively or negatively, and it also contains the complementary L-atom. Since these
are already 2n atoms, H cannot contain any L-atoms for the universally quan-
tified variables vj . We can thus define a valuation µ for u1, . . . , un simply by
setting uj 7→ 1, if L(uj) ∈ H, and uj 7→ 0, if ¬L(uj) ∈ H. It is easy to see that
the extensions τ of µ are in one-to-one correspondence with the databases that
extend H, and that ϕ evaluates to true for all of these assignments. ut
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With this result, we conclude the data complexity analysis for MPH. We
first showed a data tractability result concerning unions of conjunctive queries
analogous to MPD. As before, this is the only result with no matching lower
bound. Unlike MPD, however, ∃FO queries are proven to be coNP-complete for
MPH in data complexity. Besides, MPH remains NP-complete for ∀FO queries,
but turns out to be ΣP

2 -complete for first-order queries in data complexity.

4 Probabilistic Knowledge Bases

We have discussed several limitations of PDBs in the introduction, and stated
that the unrealistic assumptions employed in PDBs lead to even more undesired
consequences once combined with another limitation of these systems, namely,
the lack of commonsense knowledge, a natural component of human reasoning,
which is not present in plain (probabilistic) databases. A common way of encod-
ing commonsense knowledge is in the form of ontologies.

In this section, we enrich probabilistic databases with ontological knowl-
edge. More precisely, we adopt the terminology from [7] and speak of ontology-
mediated queries (OMQs), that is, database queries (typically, unions of con-
junctive queries) coupled with an ontology. The task of evaluating such queries
is then called ontology-mediated query answering (OMQA). We first give a brief
overview on the Datalog± family of languages, and introduce the paradigm of
ontology-mediated query answering. Afterwards, we present results regarding
ontology-mediated query evaluation over PDBs. We also discuss maximal pos-
terior reasoning problems in the context of ontology-mediated queries.

4.1 Ontology-Mediated Query Answering in Datalog±

We again consider a relational vocabulary σ, which is now extended with a (po-
tentially infinite) set N of nulls. We first introduce the so-called negative con-
straints (NCs). From a database perspective, NCs can be seen as a special case
of denial constraints over databases [67]. Formally, a negative constraint (NC) is
a first-order formula of the form ∀xΦ(x)→ ⊥, where Φ(x) is a conjunction of
atoms, called the body of the NC, and ⊥ is the truth constant false. Consider,
for example, the NCs

∀xWriter(x) ∧ Novel(x)→ ⊥,
∀x, y ParentOf(x, y) ∧ ParentOf(y, x)→ ⊥.

The former states that writers and novels are disjoint entities, whereas the latter
asserts that the ParentOf relation is antisymmetric.

To formulate more general ontological knowledge, tuple-generating depen-
dencies are introduced. Intuitively, such dependencies describe constraints on
databases in the form of generalized Datalog rules with existentially quanti-
fied conjunctions of atoms in rule heads. Formally, a tuple-generating depen-
dency (TGD) is a first-order formula of the form ∀xΦ(x)→ ∃y Ψ(x,y), where
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Φ(x) is a conjunction of atoms, called the body of the TGD, and Ψ(x,y) is a
conjunction of atoms, called the head of the TGD. Consider the TGDs

∀x, y AuthorOf(x, y) ∧ Novel(y)→Writer(x), (1)

∀yNovel(y)→ ∃xAuthorOf(x, y) ∧Writer(x). (2)

The first one states that anyone who authors a novel is a writer. The second one
asserts that all novels are authored by a writer. Note that TGDs can express the
well-known inclusion dependencies and join dependencies from database theory.
A Datalog± program (or ontology) Σ is a finite set of negative constraints and
tuple generating dependencies. A Datalog± program is positive if it consists of
only TGDs, i.e., does not contain any NCs.

In essence, Datalog± languages are only syntactic fragments of first-order
logic, which also employ the standard name assumption, as in databases. Thus,
a first-order interpretation I is a model of an ontology Σ in the classical sense,
i.e., if I |= α for all α ∈ Σ. Given a database D defined over known constants
and an ontology Σ, we write mods(Σ,D) to represent the set of models of Σ
that extend D, which is formally defined as {I | I |= D, I |= Σ}. A database D
is consistent w.r.t. Σ if mods(Σ,D) is non-empty.

The entailment problem in Datalog± ontologies is undecidable [5], which
motivated syntactic restrictions on Datalog± ontologies; there are a plethora of
classes of TGDs [11, 4, 45, 10, 28]; here, we only focus on some of these classes.
Our choice is primarily for ease of presentation, and most of the results can be
extended to other classes in a straight-forward manner; see e.g. [13], for a more
detailed analysis.

The (syntactic) restrictions on TGDs that we recall are guardedness [10],
stickiness [12], and acyclicity, along with their “weak” counterparts, weak guard-
edness [10], weak stickiness [12], and weak acyclicity [28], respectively. A TGD
is guarded, if there exists a body atom that contains (or “guards”) all body
variables. The class of guarded TGDs, denoted G, is defined as the family of all
possible sets of guarded TGDs. A key subclass of guarded TGDs are the linear
TGDs with just one body atom, which is automatically the guard. The class of
linear TGDs is denoted by L. Weakly guarded TGDs extend guarded TGDs by
requiring only the body variables that are considered “harmful” to appear in the
guard (see [10] for full details). The associated class of TGDs is denoted WG. It
is easy to verify that L ⊂ G ⊂WG.

Stickiness is inherently different from guardedness, and its central property
can be described as follows: variables that appear more than once in a body
(i.e., join variables) must always be propagated (or “stuck”) to the inferred
atoms. A TGD that enjoys this property is called sticky, and the class of sticky
TGDs is denoted by S. Weak stickiness generalizes stickiness by considering only
“harmful” variables, and defines the class WS of weakly sticky TGDs. Observe
that S ⊂WS.

A set of TGDs is acyclic and belongs to the class A if its predicate graph
is acyclic. Equivalently, an acyclic set of TGDs can be seen as a non-recursive
set of TGDs. A set of TGDs is weakly acyclic, if its dependency graph enjoys a
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Table 6. A database that consists of the unary relations Writer, Novel and the binary
relation AuthorOf.

Writer

balzac
dostoyevski
kafka

AuthorOf

hamsun hunger
dostoyevski gambler
kafka trial

Novel

goriot
hunger
trial

certain acyclicity condition, which guarantees the existence of a finite canonical
model; the associated class is denoted WA. Clearly, A ⊂ WA. Interestingly, it
also holds that WA ⊂WS [12].

Another fragment of TGDs are full TGDs, i.e., TGDs without existentially
quantified variables. The corresponding class is denoted by F. Restricting full
TGDs to satisfy linearity, guardedness, stickiness, or acyclicity yields the classes
LF, GF, SF, and AF, respectively. It is known that F ⊂WA [28] and F ⊂WG [10].

We usually omit the universal quantifiers in TGDs and NCs, and for clarity
we consider single-atom-head TGDs; however, our results can be easily extended
to TGDs with conjunctions of atoms in the head (except under the bounded-
arity assumption). Following the common convention, we will assume that NCs
are part of all Datalog± languages.

Ontology-mediated query answering is a popular paradigm for querying in-
complete data sources in a more adequate manner [7]. Formally, an ontology-
mediated query (OMQ) is a pair (Q, T ), where Q is a Boolean query, and T is
an ontology. Given a database D and an OMQ (Q, T ), we say that D entails
the OMQ (Q, T ), denoted D |= (Q, T ), if for all models I |= (T ,D) it holds
that I |= Q. Then, ontology-mediated query answering (OMQA) is the task of
deciding whether D |= (Q, T ) for a given database D and an OMQ (Q, T ). Note
that we use the term query answering in a rather loose sense to refer to the
Boolean query evaluation problem.

Example 9. Let us consider the database Da given in Table 6. Observe that the
simple queries

Q1 := Writer(hamsun) and Q2 := ∃xWriter(x) ∧ AuthorOf(x, goriot)

are not satisfied by the database Da although they should evaluate to true from
an intuitive perspective. On the other side, under the Datalog± program Σa that
consists of the TGDs

∀x, y AuthorOf(x, y) ∧ Novel(y)→Writer(x),

∀yNovel(y)→ ∃xAuthorOf(x, y) ∧Writer(x),

both of these queries are satisfied: Da |= (Q1, Σa) holds due to the first rule,
and Da |= (Q2, Σa) holds due to the second rule. The incomplete database is
queried through the logical rules that encode commonsense knowledge, which in
turn results in more complete answers. �
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Fig. 4. Inclusion relationships and data complexity of ontology-mediated query an-
swering for Datalog± languages.

A key paradigm in ontology-mediated query answering is the first-order
rewritability of queries. Intuitively, FO-rewritability ensures that we can rewrite
an OMQ into a (possibly large) UCQ, and this transformation is homomorphism-
preserving over all finite structures [62]. More formally, let T be an ontology
and Q a Boolean query. Then, the OMQ (Q, T ) is FO-rewritable if there exists
a Boolean UCQ QT such that, for all databases D that are consistent w.r.t. T ,
we have D |= (Q, T ) if and only if D |= QT . In this case, QT is called an FO-
rewriting of (Q, T ). A language L is FO-rewritable if it admits an FO-rewriting
for any UCQ and theory in L.

FO-rewritability implies a data-independent reduction from OMQA to query
evaluation in relational databases. In practical terms, this means that the query
can be rewritten into an SQL query to be evaluated in relational database man-
agement systems. In theoretical terms, this puts OMQA in AC0 in data complex-
ity for all FO-rewritable languages. The data complexity of ontology-mediated
query answering for basic Datalog± languages is summarized in Figure 4.

4.2 Ontology-Mediated Queries for Probabilistic Databases

We give an overview of the problem of evaluating ontology-mediated queries
for PDBs. The idea is to allow Datalog± programs on top of tuple-independent
PDBs and query the probability of a given OMQ.

Definition 11 (semantics). The probability of an OMQ (Q,Σ) relative to a
probability distribution P is

P(Q,Σ) =
∑

D|=(Q,Σ)

P(D),

where D ranges over all databases over σ.

The major difference compared to PDBs is that this semantics defers the
decision of whether a world satisfies a query to an entailment test, which also
includes a logical theory.
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Table 7. A probabilistic database Pa, which consists of the unary relations Writer,
Novel and the binary relation AuthorOf.

Writer P

balzac 0.8
dostoyevski 0.6
kafka 0.9

AuthorOf P

hamsun hunger 0.9
dostoyevski gambler 0.6
kafka trial 0.8

Novel P

goriot 0.7
hunger 0.4
trial 0.5

Note that the Datalog± program can be inconsistent with some of the worlds,
which makes standard reasoning very problematic, as anything can be entailed
from an inconsistent theory (“ex falso quodlibet”). The common way of tackling
this problem in probabilistic knowledge bases is to restrict probabilistic query
evaluation to only consider consistent worlds by setting the probabilities of in-
consistent worlds to 0 and renormalizing the probability distribution over the set
of worlds accordingly. More formally, the query probabilities can be normalized
by defining

Pn(Q,Σ) := (P(Q,Σ)− γ)/(1− γ),

where γ is the probability of the inconsistent worlds given as

γ :=
∑

mods(Σ,D)=∅

P(D).

The normalization factor γ can thus be computed once and then reused as a
post-processing step. Hence, for simplicity, we assume that all the worlds D
induced by the PDB are consistent with the program.

Let us now illustrate the effect of ontological rules in PDBs. Recall Example 9,
where we illustrated the effect of ontological rules in querying databases. Queries
that intuitively follow from the knowledge encoded in the database were not
satisfied by the given database (from Table 6). Still, it was possible to alleviate
this problem using ontological rules. We now adopt this example to PDBs and
observe a similar effect.

Example 10. Let us consider the PDB Pa given in Table 7. The queries

Q1 := Writer(hamsun) and Q2 := ∃xWriter(x) ∧ AuthorOf(x, goriot)

from Example 9 evaluate to the probability 0 on Pa. On the other side, under
the Datalog± program Σa that consists of the rules

∀x, y AuthorOf(x, y) ∧ Novel(y)→Writer(x),

∀yNovel(y)→ ∃xAuthorOf(x, y) ∧Writer(x),

there are worlds where both of these queries are satisfied. One such world is
Da given in Table 6, i.e., recall that Da |= (Q1, Σa) and Da |= (Q2, Σa).
More precisely, we obtain that P(Q1) = 0.63, since any world that contains
both AuthorOf(hamsun, hunger) and Novel(hunger) entails Writer(hamsun), and
no other world does. Similarly, P(Q2) = 0.7, since Q2 is entailed from all and
only those worlds where Novel(goriot) holds. �
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Probabilistic query evaluation, as a decision problem, is defined as before
with the only difference that it is now parametrized with OMQs.

Definition 12 (probabilistic query evaluation). Given a PDB P, an OMQ
(Q,Σ), and a value p ∈ [0, 1), probabilistic query evaluation, denoted PQE, is to
decide whether PP(Q,Σ) > p holds. PQE is parametrized with the language of
the ontology and the query; we write PQE(Q,L) to define PQE on the class Q
of queries and on the class of ontologies restricted to the language L.

We will deliberately use the terms probabilistic query evaluation and prob-
abilistic OMQ evaluation interchangeably if there is no danger of ambiguity.
We now provide a host of complexity results for probabilistic OMQ evaluation
relative to different languages.

We start our complexity analysis with a rather simple result that is of a
generic nature. Intuitively, given the complexity of OMQA in a Datalog± lan-
guage, we obtain an immediate upper and lower bound for the complexity of
probabilistic OMQ evaluation in that language.

Theorem 9. Let C denote the data complexity of ontology-mediated query an-
swering for a Datalog± language L. Then, PQE(UCQ,L) is C-hard and in PPC

for PDBs in data complexity.

Proof. Let (Q,Σ) be an OMQ, P be a PDB, and p ∈ [0, 1) be a threshold value.
Consider a nondeterministic Turing machine with a C oracle. Each branch corre-
sponds to a world D and is marked as either accepting or rejecting depending on
the outcome of the logical entailment check D |= (Q,Σ). This logical entailment
test is in C for the language L, by our assumption. Thus, it can be performed us-
ing the oracle. Then, by this construction, the nondeterministic Turing machine
answers yes if and only if PP(Q,Σ) > p, which proves membership to PPC in
the respective complexity.

To show C-hardness, we reduce from ontology-mediated query answering,
that is, given a database D and an OMQ (Q,Σ), where Q is a UCQ, and Σ is a
program over L, decide whether D |= (Q,Σ). We define a PDB P that contains
all the atoms from the database D with probability 1. Then, it is easy to see
that D |= (Q,Σ) if and only if PP(Q) ≥ 1. ut

We briefly analyze the consequences of Theorem 9. Observe that, for all
deterministic complexity classes C that contain PP, it holds that PPC = C, and
thus Theorem 9 directly implies tight complexity bounds. For instance, the data
complexity of probabilistic OMQ evaluation for WG is Exp-complete as a simple
consequence of Theorem 9.

Beyond this generic result, one is interested in lifting the data complexity
dichotomy for unions of conjunctive queries to OMQs. This connection is imme-
diate, as shown in the following.

Lemma 1. Let (Q,Σ) be an OMQ, where Q is a UCQ, and Σ is a program,
and QΣ be an FO-rewriting of (Q,Σ). Then, for any PDB P, it holds that
PP(Q,Σ) = PP(QΣ).



30 İsmail İlkan Ceylan and Thomas Lukasiewicz

Proof. For any PDB P, it holds that

PP(Q,Σ)
(1)
=

∑
D|=(Q,Σ)

PP(D)
(2)
=

∑
D|=QΣ

PP(D)
(3)
= PP(QΣ),

where (1) follows from Definition 11; (2) follows from QΣ being the FO-rewriting
of Q w.r.t. Σ; and (3) is the definition of the semantics of QΣ in PDBs. ut

With the help of Lemma 1, it becomes possible to lift the data complexity
dichotomy in probabilistic databases to all Datalog± languages that are FO-
rewritable.

Theorem 10 (dichotomy). For all FO-rewritable Datalog± languages L, the
following holds. PQE(UCQ,L) is either in P or it is PP-complete for PDBs in
data complexity under polynomial-time Turing reductions.

Proof. Let (Q,Σ) be an OMQ, where Q is a UCQ, and Σ is a Datalog± pro-
gram over an FO-rewritable language, and QΣ be an FO-rewriting of (Q,Σ). By
Lemma 1, any polynomial-time algorithm that can evaluate QΣ over PDBs also
yields the probability of the OMQ (Q,Σ) relative to an PDB, and vice versa.
This implies that the OMQ (Q,Σ) is safe if QΣ is safe.

Dually, by the same result, the probabilities of all rewritings of Q coincide,
and hence the same algorithm can be used for all of them. Thus, if (Q,Σ) is
unsafe, then QΣ must also be unsafe for PDBs. By the dichotomy of [21] and
Lemma 1, this implies that evaluating the probability of both the UCQ QΣ and
the OMQ (Q,Σ) must be PP-hard under Turing reductions. ut

Obviously, ontological rules introduce dependencies. Therefore, a safe query
can become unsafe for OMQs. However, the opposite effect is also possible, i.e.,
an unsafe query may become safe under ontological rules. We illustrate both of
these effects on a synthetic example.

Example 11. Consider the conjunctive query ∃x, y C(x) ∧ D(x, y), which is safe
for PDBs. It becomes unsafe under the TGD R(x, y),T(y)→ D(x, y), since then
it rewrites to the query

(∃x, y C(x) ∧ D(x, y)) ∨ (∃x, y C(x) ∧ R(x, y) ∧ T(y)),

which is unsafe. Conversely, the conjunctive query ∃x, y C(x) ∧ R(x, y) ∧ D(y)
is not safe for PDBs, but becomes safe under the TGD R(x, y) → D(y), as it
rewrites to ∃x, y C(x) ∧ R(x, y). Note that these are very simple TGDs, which
are full, acyclic, guarded, and sticky. �

Recall that the PP-hardness of probabilistic UCQ evaluation in data com-
plexity holds under polynomial-time Turing reductions. This transfers to proba-
bilistic OMQ evaluation relative to FO-rewritable languages. On the other hand,
for guarded full programs, it is possible to show that PP-hardness holds even
under standard many-one reductions.
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Theorem 11. PQE(UCQ,GF) is PP-hard for PDBs in data complexity.

Proof. We reduce the following problem [74]: decide the validity of the for-
mula Φ = Cc x1, . . . , xn ϕ, where ϕ = ϕ1 ∧ · · · ∧ ϕk is a propositional formula in
CNF over the variables x1, . . . , xn. This amounts to checking whether there are
at least c assignments to x1, . . . , xn that satisfy ϕ. We assume without loss of
generality that ϕ contains all clauses of the form xj ∨ ¬xj , 1 ≤ j ≤ n; clearly,
this does not affect the existence or number of satisfying assignments for ϕ. For
the reduction, we use a PDB PΦ and a program ΣΦ. We first define the PDB
PΦ as follows.

– For each variable xj , 1 ≤ j ≤ n, PΦ contains the probabilistic atoms
〈L(xj , 0) : 0.5〉 and 〈L(xj , 1) : 0.5〉, where we view xj as a constant. These
atoms represent the assignments that map xj to false and true, respectively.

– For each propositional literal (¬)x` occurring in a clause ϕj , 1 ≤ j ≤ k, PΦ
contains the atom D(x`, j, i) with probability 1, where i = 1, if the literal is
positive, and i = 0, if the literal is negative.

– PΦ contains all the atoms T(0), S(0, 1),S(1, 2), . . . ,S(k − 1, k), K(k), each
with probability 1.

We now describe the program ΣΦ. To detect when a clause is satisfied, we use
the additional unary predicate E and the TGD

L(x, i),D(y, j, i)→ E(j),

which is a universally quantified formula over the variables x, y, i, and j. We
still need to ensure that in each world, exactly one of L(x, 0) and L(x, 1) holds.
The clauses xj ∨ ¬xj take care of the lower bound; for the variables x1, . . . , xn,
we use the TGDs

L(x, 0), L(x, 1)→ B and B,D(y, j, i)→ E(j).

These TGDs ensure that any inconsistent assignment for x1, . . . , xn, i.e., one
where some xj is both true and false, is automatically marked as satisfying the
formula, even if the clause xj ∨ ¬xj is actually not satisfied. Since there are
exactly 4n − 3n such assignments (where both L(xj , 0) and L(xj , 1) hold for at
least one xj), we can add this number to the probability threshold that we will
use in the end. Note that the probability of each individual assignment is 0.25n,
since there are 2n relevant L-atoms (the other atoms are fixed to 0 or 1 and do
not contribute here).

It remains to detect whether all clauses of ϕ are satisfied by a consistent
assignment, which we do by the means of the TGDs

T(i),S(i, j),E(j)→ T(j) and T(i),K(i)→ Z(i).

Lastly, we define the simple UCQ Q := ∃i Z(i). Then, we prove the following
claim.

Claim. PPΦ
(Q,ΣΦ) ≥ 0.25n(4n − 3n + c) holds if and only if Φ is valid.



32 İsmail İlkan Ceylan and Thomas Lukasiewicz

Suppose that Φ is valid, i.e., there are at least c different assignments to x1, . . . , xn
that satisfy ϕ. Then, for each such assignment τ , we can define a world Dτ such
that it contains all atoms from PΦ that occur with probability 1. Moreover, Dτ
contains an atom L(xj , 1), if xj is mapped to true in µ, and an atom L(xj , 0),
if xj is mapped to false in µ. It is easy to see that each such database Dτ is
induced by the PDB PΦ and that Dτ |= Q by our constructions. In particu-
lar, this implies that Dτ |= QΦ for c worlds. Recall also that (4n − 3n) worlds,
capturing the inconsistent valuations, satisfy the query. As every world has the
probability (0.5)2n, we conclude that PPΦ

(QΦ) ≥ 0.52n(4n − 3n + c).
Conversely, if the query probability exceeds the threshold value, then some

worlds in PΦ with non-zero probability entail (Q,ΣΦ), i.e., all clauses of ϕ are
satisfied. Each of the non-zero worlds in PDBs represents a unique combination
of atoms of the form L(x, 0) and L(x, 1). The worlds where for at least one vari-
able xj , 1 ≤ j ≤ n, neither L(xj , 0) nor L(xj , 1) holds do not satisfy ϕ, and hence
do not entail (Q,ΣΦ) and are not counted. Excluding (4n−3n) worlds capturing
the inconsistent valuations, all other worlds represent the actual assignments
for x1, . . . , xn, and hence we know that at least c of those satisfy ϕ. Thus, we
conclude that Φ is valid.

Observe that all TGDs used in the reduction are full and guarded. More-
over, only the PDB and the probability threshold depend on the input formula
(which is allowed in data complexity). Hence, the reduction shows PP-hardness
of PQE(GF,UCQ) for PDBs in data complexity. ut

GF is one of the least expressive Datalog± languages with polynomial time
data complexity for OMQA. Thus, this result already implies PP-hardness for
the classes G, F, WS, and WA. This completes all results regarding the data
complexity. It remains open whether the data complexity dichotomy can be
extended to Datalog-rewritable languages. Clearly, a data complexity dichotomy
in these languages would be closely related to a similar result in Datalog.

4.3 Most Probable Explanations for Ontology-Mediated Queries

Motivated by maximal posterior computations in PGMs, we studied the most
probable database and most probable hypothesis problems in PDBs. We now
extend these results towards ontology-mediated queries. In a nutshell, we restrict
ourselves to unions of conjunctive queries (instead of first-order queries), but in
exchange consider additional knowledge encoded through an ontology.

Importantly, in MPD (resp., MPH), we are interested in finding the database
(resp., the hypothesis) that maximizes the query probability. In the presence
of ontological rules, we need to ensure that the chosen database is at the same
time consistent with the ontology. More precisely, for ontology-mediated queries,
models must be consistent with the ontology; thus, the definitions of MPD and
MPH are adapted accordingly.

The Most Probable Database Problem for Ontological Queries. In the
most probable database problem for ontological queries, we consider only the
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Table 8. The probabilistic database Pv.

Vegetarian

alice 0.7
bob 0.9
chris 0.6

FriendOf

alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats

bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat

shrimp 0.7
mussels 0.9
seahorse 0.3

consistent worlds induced by the PDB, and thus maximize only over consistent
worlds.

Definition 13. Let P be a probabilistic database and Q a query. The most
probable database for an OMQ (Q,Σ) over a PDB P is given by

arg max
D|=(Q,Σ),mods(D,Σ)6=∅

P(D),

where D ranges over all worlds induced by P.

To illustrate the semantics, we now revisit the Example 4 and the PDB Pv,
which is depicted in Table 8.

Example 12. Recall the following query

Qveg :=∀x, y ¬Vegetarian(x) ∨ ¬Eats(x, y) ∨ ¬Meat(y).

The most probable database for Qveg contains all atoms from Pv that have
a probability above 0.5, except for Vegetarian(chris). We can impose the same
constraint through the negative constraint

∀x, y Vegetarian(x) ∧ Eats(x, y) ∧Meat(y)→ ⊥,

and then the most probable database for the query > will be the same as before.
Obviously, we can additionally impose constraints in the form of TGDs, such as

∀x Vegetarian(x)→ ∃y FriendOf(x, y) ∧ Vegetarian(y),

which states that vegetarians have friends who are themselves vegetarians. �

The corresponding decision problem is defined as before with the only differ-
ence that now we consider ontology-mediated queries.

Definition 14 (MPD). Let (Q,Σ) be an OMQ, P a probabilistic database,
and p ∈ (0, 1] a threshold. MPD is the problem of deciding whether there exists
a database D that entails (Q,Σ) with P(D) > p. MPD is parametrized with the
language of the ontology and the query; we write MPD(Q,L) to define MPD on
the class Q of queries and on the class of ontologies restricted to the languages L.
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We start our complexity analysis with some simple observations. Note first
that consistency of a database D with respect to a program Σ can be written
as D 6|= (⊥, Σ), or equivalently, D 6|= (Q⊥, Σ

+), where Q⊥ is the UCQ obtained
from the disjunction of the bodies of all NCs in Σ, and Σ+ is the corresponding
positive program (that contains all TGDs of Σ). This transformation allows us
to rewrite the NCs into the query.

A näıve approach to solve MPD is to first guess a database D, and then
check that it entails the given OMQ does not entail the query (Q⊥, Σ

+) (i.e., it
is consistent with the program), and exceeds the probability threshold. Since the
probability can be computed in polynomial time, the problem can be decided by
a nondeterministic Turing machine using an oracle to check OMQA. Obviously,
MPD is at least as hard as OMQA in the underlying ontology languages. These
observations result in the following theorem.

Theorem 12. Let C denote the data complexity of ontology-mediated query an-
swering for a Datalog± language L. MPD(UCQ,L) is C-hard and in NPC under
the same complexity assumptions.

By a reduction from 3-colorability, it is possible to show that MPD is NP-
hard already in data complexity for OMQs, even if we only use NCs, i.e., the
query and the positive program Σ+ are empty. This strengthens the previous
result about ∀FO queries, since NCs can be expressed by universal queries, but
are not allowed to use negated atoms.

Theorem 13. MPD(UCQ,NC) is NP-complete in data complexity (which holds
even for instance queries).

Proof. The upper bound is easy to obtain; thus, we only show the lower bound.
We provide a reduction from the well-known 3-colorability problem: given an
undirected graph G = (V,E), decide whether the nodes of G are 3-colorable. We
first define the PDB PG as follows. For all edges (u, v) ∈ E, we add the atom
E(u, v) with probability 1, and for all nodes u ∈ V , we add the atoms V(u, 1),
V(u, 2), V(u, 3), each with probability 0.7. In this encoding, the atoms V(u, 1),
V(u, 2), V(u, 3) correspond to different colorings of the same node u.

We next define the conditions for 3-colorability through a set Σ containing
only negative constraints (that do not depend on G). We need to ensure that
each node is assigned at most one color, which is achieved by means of the
negative constraints:

V(x, 1),V(x, 2)→ ⊥, V(x, 1),V(x, 3)→ ⊥, V(x, 2),V(x, 3)→ ⊥.

Similarly, we need to enforce that the neighboring nodes are not assigned the
same color, which we ensure with the negative constraint:

E(x, y),V(x, c),V(y, c)→ ⊥.

Finally, we define the query Q := > and prove the following claim.
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Claim. G is 3-colorable if and only if there exists a database D such that D 6|=
(⊥, Σ) and P(D) ≥ (0.7 · 0.3 · 0.3)|V |.

Suppose that there exists a database D with a probability of at least (0.7 · 0.3 ·
0.3)|V | that satisfies all NCs in Σ. Then, for every node u ∈ V , D must contain
exactly one tuple V(u, c) for some color c ∈ {1, 2, 3}. Recall that at most was
ensured by the first three NCs; hence, in order to achieve the given threshold, at
least one of these tuples must be present. This yields a unique coloring for the
nodes. Furthermore, since D must contain all tuples corresponding to the edges
of G, and D satisfies the last NC, we conclude that G is 3-colorable.

Suppose that G is 3-colorable. Then, for a valid coloring, we define a DB D
that contains all tuples that correspond to the edges, and add all tuples V(u, c)
where c is the color of u. It is easy to see that D is consistent with Σ and
P(D) = (0.7 · 0.3 · 0.3)|V |, which concludes the proof. ut

The Most Probable Hypothesis Problem for Ontological Queries. As
before, we have to update the definition of most probable hypothesis to take into
account only consistent worlds.

Definition 15. The most probable hypothesis for an OMQ (Q,Σ) over a PDB P is

arg max
H|=(Q,Σ)

∑
D⊇H

mods(D,Σ)6=∅

P(D),

where H is a set of (non-probabilistic) atoms t occurring in P.

The corresponding decision problem is defined as before, but parametrized
with ontology-mediated queries.

Definition 16 (MPH). Let (Q,Σ) be an OMQ, P a PDB, and p ∈ (0, 1] a
threshold. MPH is the problem of deciding whether there exists a hypothesis H
that satisfies (Q,Σ) with P(H) > p. MPH is parametrized with the language of
the ontology and the query; we write MPH(Q,L) to define MPH on the class Q
of queries and on the class of ontologies restricted to the languages L.

Importantly, computing the probability of a hypothesis for an OMQ is not
as easy as for classical database queries, since now there are also inconsistent
worlds that shall be ruled out. As a consequence, computing the probability
of a hypothesis becomes PP-hard, which makes a significant difference in the
complexity analysis.

To solve MPH for OMQs, one can guess a hypothesis, and then check whether
it entails the query, and whether the probability mass of its consistent exten-
sions exceeds the given threshold. The latter part can be done by a PP Turing
machine with an oracle for OMQA. The oracle can be used also for the initial
entailment check. Clearly, MPH(UCQ,L) is at least as hard as OMQA in L. The
next theorem follows from these observations.
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Theorem 14. Let C denote the data complexity of ontology-mediated query an-

swering for a Datalog± language L. MPD(UCQ,L) is C-hard and in NPPPC

under the same complexity assumptions.

For any C ⊆ PH, this result yields NPPPPH

= NPPPP

= NPPP as an upper
bound, due to a result from [69]. For FO-rewritable Datalog± languages, we
immediately obtain an NPPP upper bound for MPH as a consequence of Theo-
rem 14. The obvious question is whether this is also a matching lower bound for
FO-rewritable languages?

In general, the (oracle) test of checking whether the probability of a hy-
pothesis exceeds the threshold value is PP-hard. Thus, PP-hardness for MPH
for FO-rewritable languages cannot be avoided in general. The remaining ques-
tion is whether the hypothesis can be identified efficiently, or do we really need
to guess the hypothesis? Fortunately, this can be avoided, since we can walk
through polynomially many hypotheses (in data complexity) and combine the
threshold tests for each of the hypotheses into a single PP computation using
the results of [6].

Theorem 15. Let L be a Datalog± languages, for which ontology-mediated query
answering is in AC0 in data complexity. Then, MPH(UCQ,L) is PP-complete
in data complexity under polynomial time Turing reductions.

Proof. PP-hardness follows from the complexity of probabilistic query evalua-
tion over PDBs ([68], Corollary 1), since we can choose Q = > and reformulate
any UCQ into a set of NCs such that the consistency of a database is equivalent
to the non-satisfaction of the UCQ.

We consider an OMQ (Q,Σ), a PDB P, and a threshold p. Since the query is
FO-rewritable, it is equivalent to an ordinary UCQ QΣ over P. Similarly, we can
rewrite the UCQQ⊥ expressing the non-satisfaction of the NCs into a UCQQ⊥,Σ .
By the observation in Theorem 5, we can enumerate all hypotheses H, which are
the polynomially many matches for QΣ in P, and then have to check for each H
whether the probability of all consistent extensions exceeds p. The latter part is
equivalent to evaluating ¬Q⊥,Σ ∧

∧
t∈H t over P, which can be done by a PP

oracle. We accept if and only if one of these PP checks yields a positive answer.
In the terminology of [6], this is a polynomial-time disjunctive reduction of our
problem to a PP problem. Since that paper shows that PP is closed under such
reductions, we obtain the desired PP upper bound. ut

Given Theorem 15, one may wonder whether the PP upper bound for MPH
also applies to languages where OMQA is P-complete in data complexity. Inter-
estingly, MPH(UCQ,GF) is already NPPP-hard.

Theorem 16. MPH(UCQ,GF) is NPPP-hard in data complexity.

Proof. We reduce the following problem from [74]: decide the validity of

Φ = ∃x1, . . . , xn Cc y1, . . . , ym ϕ,
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where ϕ = ϕ1 ∧ · · · ∧ ϕk is a propositional formula in CNF, defined over the
variables x1, . . . , xn, y1, . . . , ym. This amounts to checking whether there is a
partial assignment for x1, . . . , xn that admits at least c extensions to y1, . . . , ym
that satisfy ϕ.

We can assume without loss of generality that each of the clauses ϕi con-
tains exactly three literals: shorter clauses can be padded by copying existing
literals, and longer clauses can be abbreviated using auxiliary variables that are
included under the counting quantifier Cc. Since the values of these variables are
uniquely determined by the original variables, this does not change the number
of satisfying assignments.

We define the PDB PΦ that describes the structure of Φ:

– For each variable v occurring in Φ, PΦ contains the tuples 〈V(v, 0) : 0.5〉 and
〈V(v, 1) : 0.5〉, where v is viewed as a constant. These tuples represent the
assignments that map v to false and true, respectively.

– For each clause ϕj , we introduce the tuple 〈C(v1, t1, v2, t2, v3, t3) : 1〉, where
ti is 1, if vi occurs negatively in ϕj , and 0, otherwise (again, all terms are con-
stants). For example, for x3 ∨¬y2 ∨x7, we use 〈C(x3, 0, y2, 1, x7, 0) : 1〉. This
encodes the knowledge about the partial assignments that do not satisfy ϕ.

– We use auxiliary atoms 〈A(x1) : 1〉, 〈S(x1, x2) : 1〉, . . . , 〈S(xn−1, xn) : 1〉,
〈L(xn) : 1〉 to encode the order on the variables xi, and similarly for yj we use
the atoms 〈B(y1) : 1〉, 〈S(y1, y2) : 1〉, . . . , 〈S(ym−1, ym) : 1〉, and 〈L(ym) : 1〉.

We now describe the program Σ used for the reduction. First, we detect whether
all variables xi (1 ≤ i ≤ n) have a truth assignment (i.e., at least one of the
facts V(xi, 0) or V(xi, 1) is present) by the special nullary predicate A, using the
auxiliary unary predicates V and A:

V(x, t)→ V(x),

A(x) ∧ V(x) ∧ S(x, x′)→ A(x′),

A(x) ∧ V(x) ∧ L(x)→ A,

where x, x′, t are variables. We do the same for the variables y1, . . . , ym:

B(y) ∧ V(y) ∧ S(y, y′)→ B(y′),

B(y) ∧ V(y) ∧ L(y)→ B.

Now, the query Q = A ensures that only such hypotheses are valid that at least
contain a truth assignment for the variables x1, . . . , xn.

Next, we restrict the assignments to satisfy ϕ by using additional NCs in Σ.
First, we ensure that there is no “inconsistent” assignment for any variable v,
i.e., only one of the facts V(v, 0) or V(v, 1) holds:

V(v, 0) ∧ V(v, 1)→ ⊥.

Furthermore, if all variables y1, . . . , ym have an assignment, then none of the
clauses in ϕ can be falsified:

C(v1, t1, v2, t2, v3, t3) ∧ V(v1, t1) ∧ V(v2, t2) ∧ V(v3, t3) ∧ B→ ⊥,
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where v1, t1, v2, t2, v3, t3 are variables. We now prove the following claim.

Claim. Φ is valid if and only if there exists a hypothesis H that satisfies (Q,Σ)
such that all consistent databases that extend H sum up to a probability (un-
der PΦ) of at least p = 0.25n · 0.25m(3m − 2m + c).

Assume that such a hypothesis H exists. Since H |= (Q,Σ), we know that for
each xi (1 ≤ i ≤ n) one of the atoms V(xi, 0), V(xi, 1) is included in H. In
each consistent extension of H, it must be the case that the complementary
facts (representing an inconsistent assignment for xi) are false. In particular,
these complementary facts cannot be part of H, since then its probability would
be 0. Hence, we can ignore the factor 0.25n in the following. There are exactly
3m − 2m databases satisfying H that represent consistent, but incomplete as-
signments for the variables yj . Since these databases do not entail B, they are
all consistent, and hence counted towards the total sum. The inconsistent as-
signments for y1, . . . , ym yield inconsistent databases, which leaves us only with
the 2m databases representing proper truth assignments. Those that violate at
least one clause of ϕ become inconsistent, and hence there are at least c such
consistent databases if and only if there are at least c extensions of the assign-
ment represented by H that satisfy ϕ. We conclude these arguments by noting
that the probability of each individual choice of atoms V(yj , tj) (1 ≤ j ≤ m)
is 0.25m.

On the other hand, if Φ is valid, then we can use the same arguments to con-
struct a hypothesis H (representing the assignment for x1, . . . , xn) that exceeds
the given threshold. ut

We observe a sharp contrast in data complexity results for MPH: PP vs.
NPPP, as summarized in Theorems 15 and 16, respectively. These results en-
tail an interesting connection to the data complexity dichotomy for probabilistic
query evaluation in PDBs [21]. Building on Theorem 15, we can show a direct re-
duction from MPH for FO-rewritable languages to probabilistic query evaluation
in PDBs, which implies a data complexity dichotomy between P and PP [21].

Theorem 17 (dichotomy). For FO-rewritable languages L, MPH(UCQ,L) is
either in P or PP-hard in data complexity under polynomial time Turing reduc-
tions.

Proof. Recall the proof of Theorem 15. According to [21], the evaluation problem
for the UCQ Q⊥,Σ over a PDB P is either in P or PP-hard (under polynomial
time Turing reductions). In the former case, MPH can also be decided in deter-
ministic polynomial time. In the latter case, we reduce the evaluation problem
for Q⊥,Σ over a PDB P to the MPH for QΣ and Q⊥,Σ over some PDB P̂ ⊇ P.

For the reduction, we introduce an “artificial match” forQΣ into P̂, by adding
new constants and atoms (with probability 1) that satisfy one disjunct of QΣ ,
while taking care that these new atoms do not satisfy Q⊥,Σ . Such atoms must
exist if QΣ is not subsumed by Q⊥,Σ ; otherwise, all hypotheses would trivially
have the probability 0 (and hence the MPH would be decidable in polynomial
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time). In P̂, the probability of the most probable hypothesis for QΣ and Q⊥,Σ
is the same as the probability of Q⊥,Σ over P, and hence deciding the threshold
is PP-hard by [21] and Corollary 1. ut

5 Related Work

Research on probabilistic databases is almost as old as traditional databases as
stated in [68]. We note the seminal work of [31], which has been very important in
probabilistic database research as well as the first formulation of possible worlds
semantics in the context of databases by [41]. Note that the possible worlds
semantics has been widely employed in artificial intelligence; e.g., in probabilistic
graphical models [44, 23, 54] and probabilistic logic programming [63, 57, 24, 64].

Recent advances on PDBs are mainly driven by the dichotomy result given for
unions of conjunctive queries [21]. Recently, open-world probabilistic databases
have been proposed as an alternative open-world probabilistic data model, and
the data complexity dichotomy has been lifted to this open-world semantics
[15, 16]. Other dichotomy results extend the dichotomy for unions of conjuncive
queries in other directions; some allow for disequality (6=) joins in the queries [51]
and some for inequality (<) joins in the queries [52]. There is also a trichotomy
result over queries with aggregation [59]. The common ground in all these di-
chotomy results is the fact that they classify queries as being safe or unsafe (while
the data is not fixed). A different approach is to obtain a classification relative
to the structure of the underlying database, and it has been proven in [2], for
instance, that every query formulated in monadic second-order logic can be eval-
uated in linear time over PDBs with a bounded tree-width.

The literature on probabilistic extensions of ontology languages is rich, and
we refer the interested reader to a survey [49], and focus on the most recent,
and in particular, data-oriented models, which are also recently surveyed in
terms of semantic expressivity [9]. Ontology-mediated queries for probabilistic
databases have been investigated in the context of both description logics [43,
18] and Datalog± [8], and the dichotomy results from PDBs are lifted. Most
of the recent work on probabilistic query answering using ontologies is based
on lightweight ontology languages, such as the approaches to Bayesian descrip-
tion logics in [22, 18, 19], which combine the description logics of the DL-Lite
family and the description logic EL, respectively, with Bayesian networks [54].
The underlying probabilistic semantics can be generalized to other ontology lan-
guages and PGMs as well. For example, a closely related approach is the one
to probabilistic Datalog± in [33], which combines Datalog± with Markov logic
networks [61]. In [17], the computational complexity of query answering in prob-
abilistic Datalog± under the possible worlds semantics is investigated.

Maximal posterior computational problems are inspired by PGMs [44], in
particular, Bayesian networks [54]. The most probable database problem is intro-
duced in [37], while the most probable hypothesis problem is introduced in [14].
Moreover, these problems are also studied for ontological queries in [14].
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6 Conclusion

We have surveyed several query answering and reasoning tasks that can be used
to exploit the full potential of probabilistic knowledge bases. In the first part of
the tutorial, we focused on (tuple-independent) probabilistic databases as the
simplest probabilistic data model. In the second part of the tutorial, we moved
on to richer representations where the probabilistic database is extended with
ontological knowledge. For each part, we surveyed some known data complexity
results and highlighted some recent results.
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55. Peters, S.E., Zhang, C., Livny, M., Ré, C.: A machine reading system for assembling

synthetic paleontological databases. PLoS ONE 9(12) (2014)
56. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:

Linking data to ontologies. Journal on Data Semantics 10 (2008)
57. Poole, D.: The independent choice logic for modelling multiple agents under un-

certainty. Artificial Intelligence 94(1-2), 7–56 (1997)
58. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the

probability that a graph is connected. SIAM Journal on Computing 12(4), 777–788
(1983)
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