Skip to main content

Analysis of Control Sensitivity Functions for Power System Frequency Regulation

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Abstract

This work studies the behavior of the Control Sensitivity Functions derivated from the frequency regulation structure in power systems. Here, we explore the performance of the sensitivity functions in the presence of changes in the parameters of frequency regulation and power system components. A one-area power system is employed as the simulation benchmark. Results of frequency-domain analysis with Bode plots highlight the more significant parameters for Load Frequency Control and the different changes in sensitivity functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, P.M., Fouad, A.A.: Power System Control and Stability. IEEE Press Power Engineering Series. Wiley-IEEE Press, Hoboken (2002)

    Book  Google Scholar 

  2. Barrero-Gonzlez, F., Milans-Montero, M., Gonzlez-Romera, E., Roncero-Clemente, C., Gonzlez-Castrillo, P.: El Control de Potencia y Frecuencia en los Sistemas Elctricos Multirea. Revisin y Nuevos Retos. Revista Iberoamericana de Automtica e Informtica Industrial RIAI 12(4), 357–364 (2015). https://doi.org/10.1016/j.riai.2015.07.001

    Article  Google Scholar 

  3. Bevrani, H.: Robust Power System Frequency Control. Power Electronics and Power Systems, 2nd edn. Springer, New York (2014). https://doi.org/10.1007/978-0-387-84878-5

    Book  MATH  Google Scholar 

  4. Chen, J., Yang, F., Han, Q.L.: Model-free predictive \(_{\rm infty}\) control for grid-connected solar power generation systems. IEEE Trans. Control Syst. Technol. 22(5), 2039–2047 (2014). https://doi.org/10.1109/TCST.2013.2292879

    Article  Google Scholar 

  5. Duque, E., Patino, J., Velz, L.: Implementation of the ACM0002 methodology in small hydropower plants in Colombia under the clean development mechanism. Int. J. Renew. Energy Res. 6(1), 21–33 (2016)

    Google Scholar 

  6. Horta, R., Espinosa, J., Patino, J.: Frequency and voltage control of a power system with information about grid topology. In: 2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC), pp. 1–6. IEEE (2015)

    Google Scholar 

  7. Huang, H., Li, F.: Sensitivity analysis of load-damping characteristic in power system frequency regulation. IEEE Trans. Power Syst. 28(2), 1324–1335 (2013). https://doi.org/10.1109/TPWRS.2012.2209901

    Article  Google Scholar 

  8. Huang, H., Li, F.: Sensitivity analysis of load-damping, generator inertia and governor speed characteristics in hydraulic power system frequency regulation. In: Power Engineering Conference (AUPEC), 2014 Australasian Universities. pp. 1–6, September 2014. https://doi.org/10.1109/AUPEC.2014.6966474

  9. Li, W., Joos, G., Abbey, C.: Wind power impact on system frequency deviation and an ESS based Power filtering algorithm solution. In: Power Systems Conference and Exposition, 2006, PSCE 2006, pp. 2077–2084. IEEE PES, October 2006. https://doi.org/10.1109/PSCE.2006.296265

  10. Luo, C., Far, H., Banakar, H., Keung, P.K., Ooi, B.T.: Estimation of wind penetration as limited by frequency deviation. IEEE Trans. Energy Convers. 22(3), 783–791 (2007). https://doi.org/10.1109/TEC.2006.881082

    Article  Google Scholar 

  11. Ma, X., Yang, H., Zeng, G., Yin, Q., Yuan, L.: Robust controller design of doubly fed induction wind generator based on IMC theory. Yi Qi Yi Biao Xue Bao/Chin. J. Sci. Instrum. 37(11), 2528–2535 (2016)

    Google Scholar 

  12. Mosskull, H.: Performance and robustness evaluation of dc-link stabilization. Control Eng. Pract. 44, 104–116 (2015). https://doi.org/10.1016/j.conengprac.2015.06.011

    Article  Google Scholar 

  13. Pandey, S.K., Mohanty, S.R., Kishor, N.: A literature survey on load–frequency control for conventional and distribution generation power systems. Renew. Sustain. Energy Rev. 25, 318–334 (2013). https://doi.org/10.1016/j.rser.2013.04.029

    Article  Google Scholar 

  14. Patino, J., Espinosa, J.: Control sensitivity functions of frequency regulation for a one-area power system. In: 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), pp. 1–6, October 2017. https://doi.org/10.1109/CCAC.2017.8276460

  15. Patino, J., Valencia, F., Espinosa, J.: Sensitivity analysis for frequency regulation in a two-area power system. Int. J. Renew. Energy Res. 7(2), 700–706 (2017)

    Google Scholar 

  16. Ruiz, S., Patino, J., Espinosa, J.: PI and LQR controllers for frequency regulation including wind generation. Int. J. Electr. Comput. Eng. (IJECE) 8(6) (2018). http://www.iaescore.com/journals/index.php/IJECE/article/view/11840

  17. Ruiz, S., Patino, J., Marquez, A., Espinosa, J.: Optimal design for an electrical hybrid microgrid in Colombia under fuel price variation. Int. J. Renew. Energy Res. 7(24), 1535–1545 (2017). http://ijrer.com/index.php/ijrer/article/view/6128/pdf

    Google Scholar 

  18. Ruiz, S., Patino, J., Espinosa, J.: Load frequency control of a multi-area power system incorporating variable-speed wind turbines. In: Conference Proceedings of XVII Latin American Conference in Automatic Control, Medelln, Colombia, pp. 447–452 (2016)

    Google Scholar 

  19. Saadat, H.: Power System Analysis. PSA Publishing, United States (2010)

    Google Scholar 

  20. Skogestad, S.: Multivariable Feedback Control: Analysis and Design. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  21. Vesti, S., Oliver, J.A., Prieto, R., Cobos, J.A., Suntio, T.: Simplified small-signal stability analysis for optimized power system architecture. In: 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1702–1708, March 2013. https://doi.org/10.1109/APEC.2013.6520526

  22. Wang, H., Xu, Z., Li, Z., Shang, Z., Zhang, H.: Analysis of electric power steering control based on S/T method. In: Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), vol. 1, pp. 582–585, June 2004. https://doi.org/10.1109/WCICA.2004.1340642

Download references

Acknowledgement

Colciencias supported contributions of J. Patiño through the program “Convocatoria 528 – Convocatoria Nacional para Estudios de Doctorados en Colombia 2011”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Patiño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patiño, J., López, J.D., Espinosa, J. (2018). Analysis of Control Sensitivity Functions for Power System Frequency Regulation. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics