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Abstract. Parkinson’s disease is a neuro-degenerative disorder charac-
terized by different motor symptoms, including several gait impairments.
Gait analysis is a suitable tool to support the diagnosis and to monitor
the state of the disease. This study proposes the use of non-linear dynam-
ics features extracted from gait signals obtained from inertial sensors for
the automatic detection of the disease. We classify two groups of healthy
controls (Elderly and Young) and Parkinson’s patients with several clas-
sifiers. Accuracies ranging from 86% to 92% are obtained, depending on
the age of the healthy control subjects.
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1 Introduction

Parkinson’s disease (PD) is a neuro-degenerative disorder characterized by the
progressive loss of dopaminergic neurons in the mid brain [1], which produces
motor and non-motor impairments. Motor symptoms include lack of coordina-
tion, tremor, rigidity, and postural instability. Gait impairments appear in most
of patients and include freezing, shuffling, and festinating gait. The standard
scale to evaluate the neurological state of the patients is the Movement Dis-
order Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS-III) [2].
The third section of the scale contains 14 items to evaluate the lower limbs.

Gait analysis of PD patients have been performed commonly with inertial
sensors e.g., accelerometers and gyroscopes attached to the shoes of the pa-
tients [3, 4]. Several studies have described gait impairments of PD patients us-
ing kinematics features related to the speed and length of each stride, which are
computed from signals captured from the inertial sensors. In [5] several inertial
sensors attached to the lower and upper limbs were used to predict the neurolog-
ical state of PD patients. The authors computed features related to stance time,
length of the stride, and velocity of each step, and reported a Pearson’s correla-
tion coefficient of 0.60 between predicted values and real UPDRS score. In [6] the
authors classified PD patients and healthy control (HC) subjects with kinematic
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features computed from inertial sensors attached to the shoes. The features in-
clude the stride time, the swing phase, the heel force, the stride length, and
others. The authors reported accuracies of up to 90% using a classifier based on
Linear discriminant analysis. Recently in [7] the authors proposed new features
to assess gait impairments in PD patients. Those new features were the peak
forward acceleration in the loading phase and peak vertical acceleration around
heel-strike, which encode the engagement in stride initiation and the hardness
of the impact at heel-strike, respectively. The results indicated that the pro-
posed features correlate with the disease progression and the loss of postural
agility/stability of the patients. In previous studies [8] we computed kinematics
features from gait signals captured with the same inertial sensors [9] to evaluate
the neurological state of the patients. A Spearman’s correlation of up to 0.72 was
reported between the MDS-UPDRS-III score of the patients and the predicted
values obtained with a support vector regressor.

Although the success of the kinematics features to assess the gait symp-
toms of PD patients, there are components related with the stability during
the walking process that cannot be characterized properly with the classical ap-
proach. In order to model those components it is necessary to use Nonlinear
dynamics (NLD) features [10, 11]. This study considers several NLD features to
model the gait process of PD patients and HC subjects. The features include
correlation dimension (CD), Largest Lyapunov exponent (LLE), Hurst exponent
(HE), Lempel-Ziv Complexity (LZC), and several entropy measures, which have
proved to be suitable for the NLD analysis of PD [11, 12]. Three classifiers are
considered: K-Nearest Neighbors (KNN), Support Vector Machine (SVM) and
Random Forest (RF). As aging is an interesting aspect that deserves attention,
its effect is considered by the inclusion of two groups of HC subjects: Young HC
subjects (YHC) and elderly HC (EHC). The results confirmed that age is an im-
portant factor that needs to be addressed when patients with neurodegenerative
diseases are considered. In addition, we reported accuracies ranging from 86%
to 92%, depending on the age of the HC subjects.

2 Data

Gait signals were captured with the eGaIT system1, which consists of a 3D-
accelerometer (range ±6g) and a 3D gyroscope (range ±500◦/s) attached to the
lateral heel of the shoes [4]. Figure 1 shows the eGait system and the inertial
sensor attached to the lateral heel of the shoe. The signals are transmitted by
bluetooth to a tablet where they are received by an android app.

Data from both foot were captured with a sampling rate of 100 Hz and 12-bit
resolution. The tasks performed by the patients include 20 meters walking with
a stop at 10 meters (Two times 10 m walk, 2x10m), and 40 meters walking with
a stop every 10 meters (Four times 10 m walk, 4x10m).

Data are obtained from 45 PD patients and 89 HC subjects. The HC sub-
jects were divided into two groups: the first one formed with 44 YHC (Young

1 Embedded Gait analysis using Intelligent Technology, http://www.egait.de/
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Fig. 1: Interface eGaiT and shoe with its attached inertial sensor.

Healthy Controls), and the second one with 45 EHC (Elderly Healthy Controls)
subjects. The patients were evaluated by an expert neurologist and labeled ac-
cording to the MDS-UPDRS-III score. Table 1 shows additional information of
the participants of this study.

Table 1: General information of the subjects. PD patients: Parkinson’s disease
patients. HC: healthy controls. µ: average. σ: standard deviation. T: disease
duration.

PD patients YHC subjects EHC subjects
male female male female male female

Number of subjects 17 28 26 18 23 22
Age ( µ± σ ) 65 ± 10.3 58.9 ± 11.0 25.3 ± 4.8 22.8 ± 3.0 66.3 ± 11.5 59.0 ± 9.8
Range of age 41-82 29-75 21-42 19-32 49-84 50-74
T ( µ± σ ) 9 ± 4.6 12.6 ± 12.2
Range of duration of the disease 2-15 0-44
MDS-UPDRS-III ( µ± σ ) 37.6 ± 21.0 33 ± 20.3
Range of MDS-UPDRS-III 8-82 9-106

3 Methods

3.1 Nonlinear Dynamics Feature extraction

Phase Space. The phase space reconstruction is the first step for the NLD
analysis. The Takens’s Theorem [13] is used for such a purpose. The phase space
is represented by Equation 1 for a time-series st. The time-delay τ is computed
by the first minimum of the mutual information function, and the embedding
dimension m is found using the false neighbor method [14].

St =
{
st, st−τ , ...st−(m−1)τ

}
(1)

Figure 2 shows the phase space obtained from gait signals considering 20
meters walking with a stop at 10 meters from three subjects: (A) YHC, (B)
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EHC, and (C) PD patient. Note that the phase space for the YHC exhibits well
defined trajectories and a clear recurrence, conversely the trajectories of PD
patient attractor are scattered. Several NLD features can be computed from the
phase space to assess the complexity and stability of the walking process.
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Fig. 2: Phase space from gait signals from 20 meters walking with a stop at 10
meters of . (A) Female YHC with 22 years old. (B) Female EHC with 52 years
old. (C) Female PD patient with 52 years old and MDS-UPDRS=49.

Correlation Dimension(CD) establishes a measure over the exact space that
is occupied by the phase space. The correlation sum C(ε) is defined for a set of
points xn of the phase space according to Equation 2. Where θ is the Heaviside
step function. C(ε) counts the distance between xi and xj that are lower than
a threshold ε and N is the number of embedded points. To compute the CD, a
linear regression of ln(C(ε)) vs ln(ε) is performed. The slope of the resultant line
for a small ε value corresponds to CD [15].

C(ε) = lim
n→∞

1

N(N − 1)

N∑
i=1

N∑
j=i+1

θ(ε− |xi − xj |) (2)

Largest Lyapunov Exponent (LLE) measures the sensitivity to initial con-
ditions of the signal, and gives information about the stability properties of the
gait signal. LLE quantifies the exponential divergence of the neighbor paths in
a phase space, i.e., it measures the degree of non-periodicity of a given signal.
After the reconstruction of the phase-space, the nearest neighbor of each embed-
ded point is located. LLE is estimated as the mean separation rate between the
nearest neighbor, according to d(t) = Aeλt, where λ corresponds to the LLE, d(t)
is the mean divergence in an instant t and A is a constant for normalization [15].

Hurst Exponent (HE) evaluates the long-term dependency of the time series.
The HE is a smoothness measure of a fractal time series based on an asymptotic
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behavior of the re-scaled range of the signal. The HE is computed by THE = R
S ,

T is the duration of time-series and R
S corresponds to the re-scaled range [15].

Lempel-Ziv complexity (LZC) correlates the number of different patterns
that lie along a sequence. It reflects the order that is retained in a one-dimensional
temporal pattern of symbols. The signal is transformed into binary sequences ac-
cording to the difference between consecutive samples, and the LZC reflects the
rate of new patterns in the sequence, and ranges from 0 (deterministic sequence)
to 1 (random sequence) [16].

Entropy Measures Six entropy measurements are computed: One of them
corresponds to the Approximate Entropy (ApEn), which provides a general reg-
ularity measure. After computing the correlation sum Ci defined by Equation 2,
we define an average version according to Equation 3. m is the pattern length
and r is the effective filter. ApEn is defined as the increment of φm(r) between
two immediate steps of m, i.e., ApEn(m, r,N) = φm(r)− φm+1(r).

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

logCmi (r) (3)

Each point in the phase space counts itself when we compute the ApEn.
ApEn depends on the length of the time series, causing that short gait signals
have a lower estimation than the expected. To avoid this problems the Sample
Entropy (SampEn) [17] is also considered in this study. The regularity of the
signals computed with ApEn and SampEn is affected by the discontinuity of the
Heaviside function in Equation 2. A proposed solution [18] consists of replacing
the Heaviside step function with a Gaussian kernel in the estimation of Cmi (r).
We compute the ApEn and the SampEn with the Gaussian kernel functions.

Another measure considered to analyze the deterministic and chaotic dy-
namics of gait signals is the Recurrence Probability Density Entropy (RPDE),
which is computed using the close returns algorithm [19]. Let’s assume there is
a small circle B(Sn0, r) with radius r > 0, which is located close to the data
embedded point Sn0. Then, the time instant n1, where the first orbit returns
to the circle, is recorded. The difference between two time instants is the recur-
rence time T = n1 − n0. The process is repeated for all embedded points Sn,
forming an histogram of recurrence times R(T ). RPDE is computed according
to Equation 4, where Tmax is the maximum recurrence time.

RPDE = −R(i)ln(R(i))

ln(Tmax)
(4)

To compute the stochastic component of the walking process, the Detrended
Fluctuation Analysis (DFA) is considered. DFA allows to obtain long-term de-
pendencies of the time-series similar to the HE, except that DFA may be applied
to time-series whose underlying statistics are non-stationary.
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The above features were extracted from over the entire gait signal. Table 2
shows the number of computed features for each task performed by the patients.
Ten NLD features are extracted, which are computed for each of the six signals
from the inertial sensors, forming the feature matrix used to classify PD patients
and HC subjects.

Table 2: Number of features per task
Foot Task Number of axes Number of features Total

Left 2x10m 6 10 60
Left 4x10m 6 10 60
Left Fusion 6 20 120

Right 2x10m 6 10 60
Right 4x10m 6 10 60
Right Fusion 6 20 120
Both 2x10m 12 10 120
Both 4x10m 12 10 120
Both Fusion 12 20 240

3.2 Classification

Three classifiers are considered: KNN, SVM with Gaussian kernel, and RF. We
ran a 5-fold cross validation, where 3 folds were used for training, one for val-
idation and one for test respectively. The optimization criterion is based on
the accuracy on the validation set. The parameter were optimized in a grid
search over the train folds, as follows: K ∈ {3, 5, ...11} for KNN, C and γ
∈ {10−4, 10−3, ...104} for SVM and number of trees (N) ∈ {5, 10, 20, 30, 50, 100}
and depth of the decision tress (D) ∈ {2, 5, 10, 20, 30, 50, 100} for RF.

4 Experiments and results

Two experiments are performed: (1) classification of PD vs. YHC , and (2)
classification of PD vs. EHC. Individual experiments are performed by foot and
per task. In addition, the features computed from the two tasks and feet are
combined. Table 3 shows the results for the PD vs. YHC subjects. In general
the best results are obtained with the RF classifier. The fusion of features from
both feet and the two tasks also provides the highest accuracy (91.0%±4.9).

The average accuracy in train for table 3 for the tree classifiers was respec-
tively, KNN=88.3%±2.7, SVM=95.4%±4.0 and RF=99.1%±1.8.

Although the high accuracies of the experiment classifying PD vs. YHC sub-
jects, it does not consider the effect of age in the walking process. The results
classifying PD patients vs. EHC subjects with similar age to the patients are
shown in Table 4. Note that the results are slightly lower than those obtained
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Table 3: Results to classify PD patients vs. YHC subjects. ACC: accuracy in
the test set, AUC: Area under ROC curve, K: number of neighbors in the KNN.
C and γ: complexity parameter and bandwidth of the kernel in the SVM, N
and D: Number of trees and depth of the decision trees in the RF.

KNN SVM RF

Foot Task
ACC(%)
(µ± σ)

Sen(%)/Spe(%) AUC K ACC(%) Sen(%)/Spe(%) AUC C γ ACC(%) Sen(%)/Spe(%) AUC N D

Left 2x10 85.4%±6.4 75.6/95.3 0.91 5 82.0%±5.0 75.6/88.6 0.92 101 10−3 86.5%±7.6 80.0/93.3 0.92 20 20
Left 4x10 84.4%±8.1 73.3/95.6 0.95 9 91.1%±6.3 86.7/95.6 0.96 100 10−3 93.3%±7.2 93.3/93.3 0.94 30 20
Left Fusion 88.8%±3.8 77.8/100.0 0.94 5 88.9%±8.8 82.2/95.6 0.94 101 10−3 91.1%±7.4 86.7/95.6 0.95 20 100

Right 2x10 85.5%±4.8 71.1/100.0 0.88 9 79.9%±8.3 77.8/81.9 0.91 101 10−3 82.0%±4.6 77.8/86.1 0.92 10 5
Right 4x10 78.8%±9.0 60.0/97.8 0.90 7 92.2%±4.9 84.4/100.0 0.92 101 10−3 86.6%±6.2 84.4/88.9 0.95 10 100
Right Fusion 82.1%±9.0 68.9/95.6 0.91 7 88.8%±4.9 80.0/61.8 0.93 101 10−3 89.9%±6.2 84.4/95.6 0.95 50 5
Both 2x10 86.7%±5.0 73.3/97.8 0.93 7 83.2%±6.7 80.0/86.7 0.94 101 10−3 85.5%±11.5 80.0/91.1 0.92 5 2
Both 4x10 84.2%±10.7 71.1/97.8 0.93 5 86.6%±4.8 80.0/93.3 0.90 100 10−3 92.2%±6.3 88.9/95.6 0.94 20 2
Both Fusion 86.5%±2.9 73.3/100.0 0.93 5 91.0%±4.9 84.4/97.8 0.96 100 10−3 91.1%±4.9 84.4/97.8 0.96 30 10

Average 84.7 71.6/97.7 0.92 – 87.1 81.2/89.0 0.93 – – 88.7 84.4/92.9 0.94 – –
STD 2.7 5.1/2.0 0.0 – 4.2 3.5/11.6 0.0 – – 3.5 4.8/3.7 0.0 – –

in the previous experiment. Although such an impact, relatively high acuracies
are obtained, specially when we combine the features from both tasks and both
feet. For the separate classification using features computed from each foot, the
highest accuracies are obtained for the left foot, which may indicate that the left
lower limbs are more affected due to the disease, having in mind that most of
the patients are right dominant foot. This fact is known as cross laterality [20].

Table 4: Results to classify PD patients vs. EHC subjects. ACC: accuracy in the
test set, AUC: Area under ROC curve, K: number of neighbors in the KNN. C
and γ: complexity parameter and bandwidth of the kernel in the SVM, N and
D: Number of trees and depth of the decision trees in the RF.

KNN SVM RF
Foot Task ACC(%) Sen(%)/Spe(%) AUC K ACC(%) Sen(%)/Spe(%) AUC C γ ACC(%) Sen(%)/Spe(%) AUC N D

Left 2x10 81.1±9.3 80.0/82.2 0.84 5 77.78±13.0 66.7/88.9 0.74 10−4 10−4 83.3±14.2 73.3/93.3 0.89 30 2
Left 4x10 72.2±11.1 68.9/75.6 0.80 5 81.11±12.8 86.7/75.6 0.90 100 10−3 84.4±7.2 82.2/86.7 0.89 10 5
Left Fusion 80.0±8.4 73.3/86.7 0.86 5 83.33±6.8 82.2/84.4 0.84 10−4 10−4 83.3±8.8 77.8/88.9 0.89 30 30

Right 2x10 70.0±9.3 60.0/80.0 0.82 5 67.78±7.2 51.1/84.4 0.73 10−4 10−4 78.9±6.1 73.3/84.4 0.79 10 2
Right 4x10 77.8±6.8 73.3/82.2 0.82 3 76.67±7.2 73.3/80.0 0.83 101 10−3 80.0±11.5 80.0/80.0 0.87 20 2
Right Fusion 81.1±8.4 73.3/88.9 0.85 3 82.22±4.6 75.6/88.9 0.87 101 10−3 85.6±6.3 82.2/88.9 0.91 20 5
Both 2x10 76.7±12.7 68.9/84.4 0.79 5 80.00±8.4 68.9/91.1 0.85 101 10−4 78.9±11.4 71.1/86.7 0.86 30 50
Both 4x10 72.2±3.9 75.6/68.9 0.80 3 81.11±6.3 77.8/84.4 0.83 10−4 10−4 82.2±12.7 82.2/82.2 0.91 100 50
Both Fusion 85.6±5.0 77.8/93.3 0.89 3 82.22±4.6 71.1/93.3 0.86 10−4 10−4 85.6±2.5 80.0/91.1 0.91 30 30

Average 77.4 72.3/82.5 0.83 – 79.14 72.6/85.7 0.83 – – 82.3 78.0/86.9 0.88 – –
STD 4.8 5.8/7.2 0.0 – 4.5 10.25/5.6 0.1 – – 2.4 4.4/4.2 0.0 – –

The average accuracy in train for table 4 for the tree classifiers was respec-
tively, KNN=87.8%±4.3, SVM=91.4%±5.9 and RF=97.9%±3.1.

Figure 3 shows an additional comparison among the best results obtained in
the classification of PD patients vs. the two groups of HC subjects. The ROC
curves represent the results in a more compact way and it is a standard measure
of performance in medical applications. The three classifiers produce similar
results for both experiments. The impact of age in the results is also observed.
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Fig. 3: ROC curve graphics of the best results. A) PD vs YHC. B) PD vs EHC.
In both cases the fusion of features from both feet and both tasks are considered.

In addition, Figures (4, 5 and 6) show the scores of each classifier. In KNN
and RF, the score is the probability with which sample belongs to the selected
class and in SVM is the distance of the hyperplane to the sample.
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Fig. 4: KNN Scores of Fusion Both Feet task. A) PD vs YHC. B) PD vs EHC.

In figure 4.A is observed that YHC subjects are correctly classified, which
corresponds to a specificity of 100.0% for this task in table 3, while in PD
patients, the sensitivity is lower (73.3%), playing the age factor an important
role. Respect to the figure 4.B, is obtained a lower specificity, because similar



A NLD Approach to Classify Gait Signals of Parkinson’s Patients 9

age between both populations, and it tends to get confused between patients
and elderly healthy controls.
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Fig. 5: SVM Scores of Fusion Both Feet task. A) PD vs YHC. B) PD vs EHC.

In figure 5. A higher maximization of the hyperplane in comparison with the
figure 5.B can be observed with bigger distances values than in PD vs. EHC
being the elderly healthy controls very close to the patients, agreeing also with
the higher accuracies (table 3) in the classification of PD vs. YHC.
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Fig. 6: RF Scores of Fusion Both Feet task. A) PD vs YHC. B) PD vs EHC.

According to the figure 6 a larger separability between the histograms is
observed in PD vs. YHC, being easier to classify considering the big difference
between the average age (Table 1). In figure 6.B patients are miss-classified with
elderly controls.
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Any of the methods is able to find patterns that discriminate to the controls,
however, many PD patients are in an early stage of the disease, where the motor
capabilities are not too affected yet.

5 Conclusion

An automatic assessment of gait of PD patients is proposed in this study. A
NLD approach is considered to evaluate stability, long-term dependency, and
complexity of the walking process of the patients. An automatic discrimination
between PD patients and two groups of HC subjects is performed to assess the
impact of age in the walking process. The set of NLD features included features
computed from the phase space and several entropy measures.

The combination of features extracted from different tasks and from both
feet is more effective in the classification process, i.e., both tasks and feet pro-
vide complementary information to discriminate between PD patients and HC
subjects. The results also indicate the presence of the cross laterality effect [20],
since higher accuracies are obtained classifying the features computed from the
left foot rather than those computed from the right foot, although most of the
subjects from this study are right-handed. Further experiments will consider
the evaluation of the neurological state of the patients by classifying patients
in several stages of the disease according to the MDS-UPDRS-III score. Other
NLD based features can also be considered. The proposed features might also
be combined with standard kinematics features to improve the results.
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