Skip to main content

Strain Design as Multiobjective Network Interdiction Problem: A Preliminary Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11160))

Abstract

Computer-aided techniques have been widely applied to analyse the biological circuits of microorganisms and facilitate rational modification of metabolic networks for strain design in order to maximise the production of desired biochemicals for metabolic engineering. Most existing computational methods for strain design formulate the network redesign as a bilevel optimisation problem. While such methods have shown great promise for strain design, this paper employs the idea of network interdiction to fulfil the task. Strain design as a Multiobjective Network Interdiction Problem (MO-NIP) is proposed for which two objectives are optimised (biomass and bioengineering product) simultaneously in addition to the minimisation of the costs of genetic perturbations (design costs). An initial approach to solve the MO-NIP consists on a Nondominated Sorting Genetic Algorithm (NSGA-II). The shown examples demonstrate the usefulness of the proposed formulation for the MO-NIP and the feasibility of the NSGA-II as a problem solver.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amin, S.: Network interdiction and inspection models for cyber-physical security, 25 January 2017

    Google Scholar 

  2. Biscani, F., Izzo, D., Mrtens, M.: esa/pagmo2: pagmo 2.7 (Version v2.7). Zenodo, 13 April 2018. https://doi.org/10.5281/zenodo.1217831

  3. Burgard, A.P., Maranas, C.D.: Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol. Bioeng. 82(6), 670–677 (2003)

    Article  Google Scholar 

  4. Costanza, J., Carapezza, G., Angione, C., Li, P., Nicosia, G.: Robust design of microbial strains. Bioinformatics 28(23), 3097–3104 (2012)

    Article  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Ebrahim, A., Lerman, J.A., Palsson, B.O., Hyduke, D.R.: COBRApy: constraints-based reconstruction and analysis for python. BMC Syst. Biol. 7(1), 74 (2013)

    Article  Google Scholar 

  7. Feist, A.M., et al.: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3(1), 121 (2007)

    Google Scholar 

  8. Garrett, A.: Inspyred: a framework for creating bio-inspired computational intelligence algorithms in python. Software (2017). https://aarongarrett.github.io/inspyred

  9. Henry, C.S., Zinner, J.F., Cohoon, M.P., Stevens, R.L.: i Bsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol. 10(6), R69 (2009)

    Article  Google Scholar 

  10. Jiang, S., Torres, M., Pelta, D., Krabben, P., Kaiser, M., Krasnogor, N.: Improving microbial strain design via multiobjective optimisation and decision making. In: AI for Synthetic Biology 2 (2018)

    Google Scholar 

  11. Kim, J., Reed, J.L.: OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol. 4(1), 53 (2010)

    Article  Google Scholar 

  12. Lun, D.S., et al.: Largescale identification of genetic design strategies using local search. Mol. Syst. Biol. 5(1), 296 (2009)

    Google Scholar 

  13. Malaviya, A., Rainwater, C., Sharkey, T.: Multi-period network interdiction problems with applications to city-level drug enforcement. IIE Trans. 44(5), 368–380 (2009)

    Article  Google Scholar 

  14. Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nat. Biotechnol. 28(3), 245 (2010)

    Article  Google Scholar 

  15. Orth, J.D., et al.: A comprehensive genome scale reconstruction of Escherichia coli metabolism—2011. Mol. Syst. Biol. 7(1), 535 (2011)

    Article  Google Scholar 

  16. Rocco, C.M.S., Salazar, D.E.A., Ramirez-Marquez, J.E.: Multi-objective network interdiction using evolutionary algorithms. In: 2009 Annual Reliability and Maintainability Symposium (2009)

    Google Scholar 

  17. Tepper, N., Shlomi, T.: Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26(4), 536–543 (2009)

    Article  Google Scholar 

  18. Wood, R.K.: Deterministic network interdiction. Math. Comput. Model. 17(2), 1–18 (1993)

    Article  MathSciNet  Google Scholar 

  19. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

DP acknowledges support through projects TIN2014-55024-P and TIN2017-86647-P from the Spanish Ministry of Economy and Competitiveness (including European Regional Development Funds). MT enjoys a Ph.D. research training staff grant associated with the project TIN2014-55024-P and co-funded by the European Social Fund.

SJ, MK, and NK acknowledge the EPSRC for funding project “Synthetic Portabolomics: Leading the way at the crossroads of the Digital and the Bio Economies (EP/N031962/1)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torres, M., Jiang, S., Pelta, D., Kaiser, M., Krasnogor, N. (2018). Strain Design as Multiobjective Network Interdiction Problem: A Preliminary Approach. In: Herrera, F., et al. Advances in Artificial Intelligence. CAEPIA 2018. Lecture Notes in Computer Science(), vol 11160. Springer, Cham. https://doi.org/10.1007/978-3-030-00374-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00374-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00373-9

  • Online ISBN: 978-3-030-00374-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics