
ar
X

iv
:1

80
8.

01
94

5v
1

 [
cs

.C
R

]
 6

 A
ug

 2
01

8

Assessing and countering reaction attacks

against post-quantum public-key cryptosystems

based on QC-LDPC codes

Paolo Santini∗, Marco Baldi, and Franco Chiaraluce

Università Politecnica delle Marche, Ancona, Italy
p.santini@pm.univpm.it,m.baldi@univpm.it,f.chiaraluce@univpm.it

Abstract. Code-based public-key cryptosystems based on QC-LDPC
and QC-MDPC codes are promising post-quantum candidates to replace
quantum vulnerable classical alternatives. However, a new type of attacks
based on Bob’s reactions have recently been introduced and appear to
significantly reduce the length of the life of any keypair used in these
systems. In this paper we estimate the complexity of all known reaction
attacks against QC-LDPC and QC-MDPC code-based variants of the
McEliece cryptosystem. We also show how the structure of the secret
key and, in particular, the secret code rate affect the complexity of these
attacks. It follows from our results that QC-LDPC code-based systems
can indeed withstand reaction attacks, on condition that some specific
decoding algorithms are used and the secret code has a sufficiently high
rate.

Keywords: Code-based cryptography,McEliece cryptosystem, Niederreiter cryp-
tosystem, post-quantum cryptography, quasi-cyclic low-density parity-check codes.

1 Introduction

Research in the area of post-quantum cryptography, that is, the design of cryp-
tographic primitives able to withstand attacks based on quantum computers has
known a dramatic acceleration in recent years, also due to the ongoing NIST
standardization initiative of post-quantum cryptosystems [19]. In this scenario,
one of the most promising candidates is represented by code-based cryptosys-
tems, that were initiated by McEliece in 1978 [17]. Security of the McEliece
cryptosystem relies on the hardness of decoding a random linear code: a com-
mon instance of this problem is known as syndrome decoding problem (SDP)
and no polynomial-time algorithm exists for its solution [8, 16]. In particular,
the best SDP solvers are known as information set decoding (ISD) algorithms
[20, 22, 7], and are characterized by an exponential complexity, even considering
attackers provided with quantum computers [9].

Despite these security properties, a large-scale adoption of the McEliece cryp-
tosystem has not occurred in the past, mostly due to the large size of its public

∗The work of Paolo Santini was partially supported by Namirial S.p.A.

http://arxiv.org/abs/1808.01945v1

2 P. Santini, M. Baldi, F. Chiaraluce

keys: in the original proposal, the public key is the generator matrix of a Goppa
code with length 1024 and dimension 524, requiring more than 67 kB of memory
for being stored. Replacing Goppa codes with other families of more structured
codes may lead to a reduction in the public key size, but at the same time
might endanger the system security because of such an additional structure. An
overview of these variants can be found in [3].

Among these variants, a prominent role is played by those exploiting quasi-
cyclic low-density parity-check (QC-LDPC) [2, 6] and quasi-cyclic moderate-
density parity-check (QC-MDPC) codes [18] as private codes, because of their
very compact public keys. Some of these variants are also at the basis of post-
quantum primitives that are currently under review for possible standardization
by NIST [1, 5]. QC-LDPC and QC-MDPC codes are decoded through iterative
algorithms that are characterized by a non-zero decryption failure rate (DFR),
differently from classical bounded distance decoders used for Goppa codes. The
values of DFR achieved by these decoders are usually very small (in the order
of 10−6 or less), but are bounded away from zero.

In the event of a decoding failure, Bob must acknowledge Alice in order to let
her encrypt again the plaintext. It has recently been shown that the occurrence
of these events might be exploited by an opponent to recover information about
the secret key [14, 11, 12]. Attacks of this type are known as reaction attacks, and
exploit the information leakage associated to the dependence of the DFR on the
error vector used during encryption and the structure of the private key. These
attacks have been shown to be successful against some cryptosystems based on
QC-LDPC and QC-MDPC codes, but their complexity has not been assessed
yet, to the best of our knowledge.

In this paper, we consider all known reaction attacks against QC-LDPC and
QC-MDPC code-based systems, and provide closed form expressions for their
complexity. Based on this analysis, we devise some instances of QC-LDPC code-
based systems that are able to withstand these attacks. The paper is organized
as follows. In Section 2 we give a description of the QC-LDPC and QC-MDPC
code-based McEliece cryptosystems. In Section 3 we describe known reaction
attacks. In particular, we generalize existing procedures, applying them to codes
having whichever parameters and take the code structure into account, with the
aim to provide complexity estimations for the attacks. In Section 4 we make a
comparison between all the analyzed attacks, and consider the impact of the
decoder on the feasibility of some attacks. We show that QC-LDPC McEliece
code-based cryptosystems have an intrinsic resistance to reaction attacks. This
is due to the presence of a secret transformation matrix that implies Bob to
decode an error pattern that is different from the one used during encryption.
When the system parameters are properly chosen, recovering the secret key can
hence become computationally unfeasible for an opponent.

2 System description

Public-key cryptosystems and key encapsulation mechanisms based on QC-LDPC
codes [2, 5] are built upon a secret QC-LDPC code with length n = n0p and di-
mension k = (n0 − 1)p, with n0 being a small integer and p being a prime. The

Analysis of reaction attacks against QC-LDPC code-based cryptosystems 3

latter choice is recommended to avoid reductions in the security level due to the
applicability of folding attacks of the type in [21]. The code is described through
a parity-check matrix in the form:

H = [H0 |H1| · · · |Hn0−1] , (1)

where each block Hi is a p× p circulant matrix, with weight equal to dv.

2.1 Key generation

The private key is formed by H and by a transformation matrix Q, which is an
n × n matrix in quasi-cyclic (QC) form (i.e., it is formed by n0 × n0 circulant
blocks of size p). The row and column weights of Q are constant and equal to
m ≪ n. The matrix Q is generated according to the following rules:

– the weights of the circulant blocks forming Q can be written in an n0 × n0

circulant matrix w(Q) whose first row is m̄ = [m0,m1, · · · ,mn0−1], such

that
∑n0−1

i=0 mi = m; the weight of the (i, j)-th block in Q corresponds to
the (i, j)-th element of w(Q);

– the permanent of w(Q) must be odd for the non-singularity of Q; if it is also
< p, then Q is surely non-singular.

In order to obtain the public key from the private key, we first compute the
matrix H̃ as:

H̃ = HQ =
[

H̃0

∣

∣

∣
H̃1

∣

∣

∣
· · ·

∣

∣

∣
H̃n0−1

]

, (2)

from which the public key is obtained as:

G′ =



















I(n0−1)p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

H̃−1
n0−1H̃0

)T

(

H̃−1
n0−1H̃1

)T

...
(

H̃−1
n0−1H̃n0−2

)T



















, (3)

where I(n0−1)p is the identity matrix of size (n0 − 1)p. The matrix G′ is the
generator matrix of the public code and can be in systematic form since we
suppose that a suitable conversion is adopted to achieve indistinguishability
under adaptive chosen ciphertext attack (CCA2) [15].

2.2 Encryption

Let u be a k-bit information message to be encrypted, and let e be an n-bit
intentional error vector with weight t. The ciphertext x is then obtained as:

x = uG′ + e. (4)

When a CCA2 conversion is used, the error vector is obtained as a deterministic
transformation of a string resulting from certain public operations, including

4 P. Santini, M. Baldi, F. Chiaraluce

one-way functions (like hash functions), that involve the plaintext and some
randomness generated during encryption. Since the same relationships are used
by Bob to check the integrity of the received message, in the case with CCA2
conversion performing an arbitrary modification of the error vector in (4) is
not possible. Analogously, choosing an error vector and computing a consistent
plaintext is not possible, because it would require inverting a hash function.
As we will see next, this affects reaction attacks, since it implies that the error
vector cannot be freely chosen by an opponent. Basically, this turns out into the
following simple criterion: in the case with CCA2 conversion, the error vector
used for each encryption has to be considered as a randomly extracted n-tuple
of weight t.

2.3 Decryption

Decryption starts with the computation of the syndrome as:

s = xQTHT = eQTHT = e′HT , (5)

which corresponds to the syndrome of an expanded error vector e′ = eQT , com-
puted through HT . Then, a syndrome decoding algorithm is applied to s, in
order to recover e. A common choice to decode s is the bit flipping (BF) de-
coder, firstly introduced in [13], or one of its variants. In the special setting used
in QC-LDPC code-based systems, decoding can also be performed through a
special algorithm named Q-decoder [5], which is a modified version of the clas-
sical BF decoder and exploits the fact that e′ is obtained as the sum of rows
from QT . The choice of the decoder might strongly influence the probability of
success of reaction attacks, as it will be discussed afterwards.

QC-MDPC code-based systems introduced in [18] can be seen as a particular
case of the QC-LDPC code-based scheme, corresponding to Q = In0p. Encryp-
tion and decryption work in the same way, and syndrome decoding is performed
through BF. We point out that the classical BF decoder can be considered as a
particular case of the Q-decoder, corresponding to Q = In0p.

2.4 Q-decoder

The novelty of the Q-decoder, with respect to the classical BF decoder, is in
the fact that it exploits the knowledge of the matrix Q to improve the decoding
performance. A detailed description of the Q-decoder can be found in [5]. In
the Q-decoder, decisions about error positions are taken on the basis of some
correlation values that are computed as:

R = s ∗H ∗Q = Σ ∗Q, (6)

where ∗ denotes the integer inner product and Σ = s ∗ H . In a classical BF
decoder, the metric used for the reliability of the bits is only based on Σ, which is
a vector collecting the number of unsatisfied parity-check equations per position.
In QC-LDPC code-based systems, the syndrome s corresponds to the syndrome

Analysis of reaction attacks against QC-LDPC code-based cryptosystems 5

of an expanded error vector e′ = eQT : this fact means that the error positions
in e′ are not uniformly distributed, because they depend on Q. The Q-decoder
takes into account this fact through the integer multiplication by Q [5, section
2.3], and the vector R is used to estimate the error positions in e (instead of e′).

In the case of QC-MDPC codes, a classical BF decoder is used, and it can
be seen as a special instance of the Q-decoder, corresponding to Q = In0p. As
explained in [5, section 2.5], from the performance standpoint the Q-decoder

approximates a BF decoder working on H̃ = HQ. However, by exploiting H
and Q separately, the Q-decoder achieves lower complexity than BF decoding
working on H̃. The aforementioned performance equivalence is motivated by the
following relation:

R = s ∗H ∗Q =

= eQTHT ∗H ∗Q =

= eH̃T ∗H ∗Q ≈

≈ eH̃T ∗ H̃, (7)

where the approximationHQ ≈ H ∗Q comes from the sparsity of both H and Q.
Thus, equation (7) shows how the decision metric considered in the Q-decoder

approximates that used in a BF decoder working on H̃ .

3 Reaction attacks

In order to describe recent reaction attacks proposed in [11, 12, 14], let us intro-
duce the following notation.

Given two ones at positions j1 and j2 in the same row of a circulant block, the
distance between them is defined as δ(j1, j2) = min {±(j1 − j2) mod p}. Given a
vector v, we define its distance spectrum ∆(v) as the set of all distances between

any couple of ones. The multiplicity µ
(v)
d of a distance d is equal to the number

of distinct couples of ones producing that distance; if a distance does not appear

in the distance spectrum of v, we say that it has zero multiplicity (i.e., µ
(v)
d = 0),

with respect to that distance. Since the distance spectrum is invariant to cyclic
shifts, all the rows of a circulant matrix share the same distance spectrum;
thus, we can define the distance spectrum of a circulant matrix as the distance
spectrum of any of its rows (the first one for the sake of convenience).

The main intuition behind reaction attacks is the fact that the DFR depends
on the correlation between the distances in the error vector used during encryp-
tion and those in H and Q. In fact, common distances produce cancellations of
ones in the syndrome, and this affects the decoding procedure [10], by slightly
reducing the DFR. In general terms, a reaction attack is based on the following
stages:

i. The opponent sends T queries to a decryption oracle. For the i-th query,
the opponent records the error vector used for encryption (e(i)) and the
corresponding oracle’s answer (ℑ(i)). The latter is 1 in the case of a decoding
failure, 0 otherwise.

6 P. Santini, M. Baldi, F. Chiaraluce

ii. The analysis of the collected couples
{

e(i),ℑ(i)
}

provides the opponent with
some information about the distance spectrum of the secret key.

iii. The opponent exploits this information to reconstruct the secret key (or an
equivalent representation of it).

We point out that these attacks can affect code-based systems achieving secu-
rity against both chosen plaintext attack (CPA) and CCA2. However, in this
paper we only focus on systems with CCA2 security, which represent the most
interesting case. Therefore, we assume that each decryption query uses an error
vector randomly picked among all the n-tuples with weight t (see Section 2).

3.1 Matrix reconstruction from the distance spectrum

In [11, section 3.4] the problem of recovering the support of a vector from its
distance spectrum has been defined as Distance Spectrum Reconstruction (DSR)
problem, and can be formulated as follows:

Distance Spectrum Reconstruction (DSR)
Given ∆(v), with v being a p-bit vector with weight w, find a set of integers

Θ∗ =
{

v∗0 , v
∗
1 , · · · , v

∗
w−1 | v∗i < p

}

such that Θ∗ is the support of a p-bit vector
v∗ and ∆(v∗) = ∆(v).

This problem is characterized by the following properties:

– each vector obtained as the cyclic shift of v is a valid solution to the problem;
the search for a solution can then be made easier by setting v∗0 = 0 and
v∗1 = min {±d mod p| d ∈ ∆(v)};

– the elements of Θ∗ must satisfy the following property:

∀v∗i > 0 ∃d ∈ ∆(v) s.t. v∗i = d ∧ v∗i = p− d, (8)

since it must be δ(0, v∗i) = min {v∗i , p− v∗i } ∈ ∆(v).
– for every solution Θ∗, there always exists another solution Θ′ such that:

∀v∗i ∈ Θ∗ ∃!v′i ∈ Θ′ s.t. v′i = (p− v∗i) mod p; (9)

– the DSR problem can be represented through a graph G, containing nodes
with values 0, 1, · · · , p − 1: there is an edge between any two nodes i and
j if and only if δ(i, j) ∈ ∆(v). In the graph G, a solution Θ∗ (and Θ′) is
represented by a size-w clique.

Reaction attacks against QC-MDPC code-based systems are based on the
DSR problem. Instead, in the case of QC-LDPC code-based systems, an at-
tacker aiming at recovering the secret QC-LDPC code has to solve the following
problem:

Distance Spectrum Distinguishing and Reconstruction (DSDR)

Given
⋃z−1

i=0 ∆
(

v(i)
)

, where each v(i) is a p-bit vector with weight w(i), find z sets

Analysis of reaction attacks against QC-LDPC code-based cryptosystems 7

Θ∗(i) =
{

v
∗(i)
0 , v

∗(i)
1 , · · · , v

∗(i)

w(i)−1

∣

∣

∣
v
∗(i)
j < p

}

such that each Θ∗(i) is the support

of a p-bit vector v∗(i) and
⋃z−1

i=0 ∆
(

v∗(i)
)

=
⋃z−1

i=0 ∆
(

v(i)
)

.

Also in this case, the problem can be represented with a graph, where solu-
tions of the DSDR problem are defined by cliques of proper size and are coupled
as described by (9). On average, solving these problems is easy: the associated
graphs are sparse (the number of edges is relatively small), so the probability
of having spurious cliques (i.e., cliques that are not associated to the actual
distance spectrum), is in general extremely low. In addition, the complexity of
finding the solutions is significantly smaller than that of the previous steps of the
attack, so it can be neglected [11, 14]. From now on, we conservatively assume
that these problems always have the smallest number of solutions, that is equal
to 2 for the DSR case and to 2z for the DSDR case.

3.2 GJS attack

The first reaction attack exploiting decoding failures has been proposed in [14],
and is tailored to QC-MDPC code-based systems. Therefore, we describe it con-
sidering Q = In0p, H̃ = H , and we refer to it as the GJS attack. In this attack,
the distance spectrum recovery is performed through Algorithm 1. The vectors
a and b estimated through Algorithm 1 are then used by the opponent to guess
the multiplicity of each distance in the spectrum of Hn0−1. Indeed, the ratios
pd = ad

bd
follow different and distinguishable distributions, with mean values de-

pending on the multiplicity of d. This way, the analysis of the values pd allows
the opponent to recover ∆ (Hn0−1).

Algorithm 1 GJS distance spectrum recover

a← zero initialized vector of length
⌊

p
2

⌋

b← zero initialized vector of length
⌊

p
2

⌋

for {i = 0, 1, · · · , T − 1} do
x(i) ← ciphertext encrypted with the error vector e(i)

Divide e(i) as
[

e
(i)
0 , · · · , e

(i)
n0−1

]

, where each e
(i)
j has length p

∆(e
(i)
n0−1)← distance spectrum of e

(i)
n0−1

for
{

d ∈ ∆
(

e
(i)
n0−1

)}

do

bd ← bd + 1
ad ← ad + ℑ

(i)

end for
end for

Solving the DSR problem associated to ∆ (Hn0−1) allows the opponent to
obtain a matrix H∗

n0−1 = ΠHn0−1, with Π being an unknown circulant permu-
tation matrix. Decoding of intercepted ciphertexts can be done just with H∗

n0−1.

8 P. Santini, M. Baldi, F. Chiaraluce

Indeed, according to (3), the public key can be written as G′ = [I|P], with:

P =











P0

P1

...
Pn0−2











=













(

H−1
n0−1H0

)T

(

H−1
n0−1H1

)T

...
(

H−1
n0−1Hn0−2

)T













. (10)

The opponent can then compute the products:

H∗
n0−1P

T
i = ΠHi = H∗

i , (11)

in order to obtain a matrix H∗ =
[

H∗
0 , H

∗
1 , · · · , H

∗
n0−1

]

= ΠH . This matrix can
be used to efficiently decode the intercepted ciphertexts, since:

xH∗T = eHTΠT = sTΠT = s∗T . (12)

Applying a decoding algorithm on s∗T , with the parity-check matrix H∗, will
return e as output. The corresponding plaintext can then be easily recovered by
considering the first k positions of x+ e.

As mentioned in Section 3.1, the complexity of solving the DSR problem
can be neglected, which means that the complexity of the GJS attack can be
approximated with the one of Algorithm 1. First of all, we denote as Cdist the
number of operations that the opponent must perform, for each decryption query,
in order to compute the distance spectrum of e(i) and update the estimates a

and b. The p-bit block e
(i)
n0−1 can have weight between 0 and t; let us suppose

that its weight is tp, which occurs with probability

ptp =

(

p
tp

)(

n−p
t−tp

)

(

n
t

) . (13)

We can assume that in en0−1 there are no distances with multiplicity ≥ 2 (this is
reasonable when e is sparse). The average number of distances in en0−1 can thus

be estimated as
∑t

tp=0 ptp
(

tp
2

)

, which also gives the number of operations needed

to obtain the spectrum of en0−1. Each of these distances is associated to two
additional operations: the update of b, which is performed for each decryption
query, and the update of a, which is performed only in the case of a decryption
failure. Thus, if we denote as ǫ the DFR of the system and as Cenc and Cdec

the complexities of one encryption and one decryption, respectively, the average
complexity of each decryption query can be estimated as:

Cq = Cenc + Cdec + (2 + ǫ)

t
∑

tp=0

ptp

(

tp
2

)

. (14)

Thus, the complexity of the attack, in terms of work factor, can be estimated
as:

WFGJS ≈ T · Cq = T ·



Cenc + Cdec + (2 + ǫ)

t
∑

tp=0

ptp

(

tp
2

)



 . (15)

Analysis of reaction attacks against QC-LDPC code-based cryptosystems 9

3.3 FHS+ attack

More recently, a reaction attack specifically tailored to QC-LDPC code-based
systems has been proposed in [11], and takes into account the effect of the
matrix Q. We refer to this attack as the FHS+ attack. The collection phase
in the FHS+ attack is performed through Algorithm 2. We point out that we
consider a slightly different (and improved) version of the attack in [11].

Algorithm 2 FHS+ distance spectrum recover

a← zero initialized vector of length
⌊

p
2

⌋

b← zero initialized vector of length
⌊

p
2

⌋

u← zero initialized vector of length
⌊

p
2

⌋

v ← zero initialized vector of length
⌊

p
2

⌋

for {i = 0, 1, · · · , T − 1} do
x(i) ← ciphertext encrypted with the error vector e(i)

for {j = 0, 1, · · · , n0 − 1} do

Divide e(i) as
[

e
(i)
0 , · · · , e

(i)
n0−1

]

, where each e
(i)
j has length p

∆
(

e
(i)
j

)

← distance spectrum of e
(i)
j

end for
∆

(

e(i)
)

=
⋃n0−1

j=0 ∆
(

e
(i)
j

)

for
{

d ∈ ∆
(

e(i)
)}

do

bd ← bd + 1
ad ← ad + ℑ

(i)

end for
for

{

d ∈ ∆
(

e
(i)
n0−1

)}

do

vd ← vd + 1
ud ← ud + ℑ(i)

end for
end for

As in the GJS attack, the estimates ad

bd
are then used by the opponent to

guess the distances appearing in the blocks of H . In particular, every block

e
(i)
j gets multiplied by all the blocks Hj , so the analysis based on ad

bd
reveals

∆(H) =
⋃n0−1

j=0 ∆(Hj). In the same way, the estimates ud

vd
are used to guess the

distances appearing in the blocks belonging to the last block row of QT . Indeed,

the block e
(i)
n0−1 gets multiplied by all the blocksQT

j,n0−1. Since a circulant matrix
and its transpose share the same distance spectrum, the opponent is indeed
guessing distances in the first block column of Q. In other words, the analysis
based on ud

vd
reveals ∆(Q) =

⋃n0−1
j=0 ∆(Qj,n0−1).

The opponent must then solve two instances of the DSDR problem in order
to obtain candidates for Hj and Qj,n0−1, for j = 0, 1, · · · , n0 − 1. As described
in Section 3.1, we can conservatively suppose that the solution of the DSDR

problem for ∆(H) is represented by two sets Γ ∗
h =

{

Θ
∗(0)
h , · · · , Θ

∗(n0−1)
h

}

and

10 P. Santini, M. Baldi, F. Chiaraluce

Γ ′
h =

{

Θ
′(0)
h , · · · , Θ

′(n0−1)
h

}

, with each couple
{

Θ
∗(j)
h , Θ

′(j)
h

}

satisfying (9). Each

solution Θ∗(j) (as well as the corresponding Θ′(j)) represents a candidate for one
of the blocks in H , up to a cyclic shift. In addition, we must also consider that
the opponent has no information about the correspondence between cliques in
the graph and blocks in H : in other words, even if the opponent correctly guesses
all the circulant blocks of H , he does not know their order and hence must con-
sider all their possible permutations. Considering the well-known isomorphism
between p×p binary circulant matrices and polynomials in GF2[x]/(x

p+1), the
matrix H can be expressed in polynomial form as:

H(x) =
[

xα
(h)
0 hπ(h)(0)(x), x

α
(h)
1 hπ(h)(1)(x), · · · , x

α
(h)
n0−1hπ(h)(n0−1)(x)

]

, (16)

with α
(h)
j ∈ [0, p − 1], π(h) being a permutation of {0, 1, · · · , n0 − 1} (so that

π(h)(j) denotes the position of the element j in π(h)), and each hj(x) is the

polynomial associated to the support Θ
∗(j)
h or Θ

′(j)
h . In the same way, solving

the DSDR problem for ∆(Q) gives the same number of candidates for the last
column ofQ, which are denoted as qj,n0−1(x) in polynomial notation. This means
that for the last column of Q(x) we have an expression similar to (16), with n0

coefficients α
(q)
j ∈ [0, p − 1] and a permutation π(q). The opponent must then

combine these candidates, in order to obtain candidates for the last block of
the matrix H̃ = HQ, which is denoted as h̃n0−1(x) in polynomial form. Indeed,

once h̃n0−1(x) is known, the opponent can proceed as in the GJS attack for

recovering H̃ . Taking into account that H̃ = HQ, the polynomial h̃n0−1(x) can
be expressed as:

h̃n0−1(x) =

n0−1
∑

j=0

xα
(h)
j hπ(h)(j)(x)x

α
(q)
j qπ(q)(j),n0−1(x). (17)

Because of the commutative property of the addition, the opponent can look
only for permutations of the polynomials qj,n0−1(x). Then, (17) can be replaced
by:

h̃n0−1(x) =

n0−1
∑

j=0

xα
(h)
j hj(x)x

α
(q)
j qπ(q)(j),n0−1(x), (18)

which can be rearranged as:

h̃n0−1(x) =

n0−1
∑

j=0

xαjhj(x)qπ(q)(j),n0−1(x), (19)

Analysis of reaction attacks against QC-LDPC code-based cryptosystems 11

with αj = α
(h)
j + α

(q)
j mod p. Since whichever row-permuted version of H̃ can

be used to decode intercepted ciphertexts, we can write:

h̃′
n0−1(x) = x−α0 h̃n0−1(x) =

= x−α0

n0−1
∑

j=0

xαjhj(x)qπ(q)(j),n0−1(x) =

=

n0−1
∑

j=0

xβjhj(x)qπ(q)(j),n0−1(x), (20)

with β0 = 0 and βj ∈ {0, 1, · · · , p− 1}.
We must now consider the fact that, in the case of blocks Qj,n0−1 having

weight ≤ 2 (we suppose that the weights of the blocks Hj are all > 2), the

number of candidates for h̃′
n0−1(x) is reduced. Indeed, let us suppose that there

are n(2) and n(1) blocks Qj,n0−1(x) with weights 2 and 1, respectively. Let us also
suppose that there is no null block in Q. These assumptions are often verified for
the parameter choices we consider. For blocks with weight 1 there is no distance
to guess, which means that the associated polynomial is just x0 = 1. In the case
of a block with weight 2, the two possible candidates are in the form x0+xd and
x0 + xp−d. However, since x0 + xd = xd

(

x0 + xp−d
)

, the opponent can consider
only one of the two solutions defined by (9).

Hence, the number of possible choices for the polynomials hj(x) and qj,0(x)

in (20) is equal to 22n0−n(2)−n(1)

. In addition, the presence of blocks with weight
1 reduces the number of independent configurations of π(q): if we look at (18), it

is clear that any two permutations π
(q)
1 and π

(q)
2 that differ only in the positions

of the polynomials with weight 1 lead to two identical sets of candidates. Based
on these considerations, we can compute the number of different candidates in
(20) as:

Nc =
n0!

n(1)!
22n0−n(1)−n(2)

pn0−1. (21)

The complexity for computing each of these candidates is low: indeed, the
computations in (20) involve sparse polynomials, and so they require a small
number of operations. For this reason, we neglect the complexity of this step
in the computation of the attack work factor. After computing each candidate,
the opponent has to compute the remaining polynomials forming H̃(x) through
multiplications by the polynomials appearing in the non-systematic part of the
public key (see (3)). In fact, it is enough to multiply any candidate for h̃n0−1(x)
by the polynomials included in the non-systematic part of G′ (see (3)). When

the right candidate for h̃n0−1(x) is tested, the polynomials resulting from such a
multiplication will be sparse, with weight ≤ mdv. The check on the weight can
be initiated right after performing the first multiplication: if the weight of the
first polynomial obtained is > mdv, then the candidate is discarded, otherwise
the other polynomials are computed and tested. Thus, we can conservatively
assume that for each candidate the opponent performs only one multiplication.
Considering fast polynomial multiplication algorithms, complexity can be esti-
mated in Cc = p log2(p). Neglecting the final check on the weights of the vectors

12 P. Santini, M. Baldi, F. Chiaraluce

obtained, the complexity of computing and checking each one of the candidates
of h̃n0−1(x) can be expressed as:

WF
FHS

+ ≥ NcCc = 22n0−n(1)−n(2) n0!

n(1)!
pn0 log2(p). (22)

The execution of Algorithm 2 has a complexity which can be estimated in a
similar way as done for the GJS attack (see eq. (15)). However, unless the DFR
of the system is significantly low (such that T is in the order of the work factor
expressed by (22)), collecting the required number of cyphertexts for the attack
is negligible from the complexity standpoint [11], so (22) provides a (tight) lower
bound on the complexity of the attack.

3.4 FHZ attack

The FHZ attack has been proposed in [12], and is another attack procedure
specifically tailored to QC-LDPC code-based systems. The attack starts from
the assumption that the number of decryption queries to the oracle is properly
bounded, such that the opponent cannot recover the spectrum of H (this is
the design criterion followed by the authors of LEDApkc [4]). However, it may
happen that such a bounded amount of ciphertexts is enough for recovering the
spectrum of Q: in such a case, the opponent might succeed in reconstructing
a shifted version of H , with the help of ISD. The distance spectrum recovery
procedure for this attack is described in Algorithm 3.

Algorithm 3 FHZ distance spectrum recovery

for {j = 0, 1, · · · , n0 − 1} do
a(j) ← zero initialized vector of length

⌊

p
2

⌋

b(j) ← zero initialized vector of length
⌊

p
2

⌋

end for
for {i = 0, 1, · · · ,M} do

x(i) ← ciphertext encrypted with the error vector e(i)

Divide e(i) as
[

e
(i)
0 , · · · , e

(i)
n0−1

]

, where each e
(i)
j has length p

for {j = 0, 1, · · · , n0 − 1} do

∆
(

e
(i)
j

)

← distance spectrum of e
(i)
j

for
{

d ∈ ∆
(

e
(i)
j

)}

do

b
(j)
d ← bd + 1

a
(j)
d ← ad + ℑ(i)

end for
end for

end for

The estimates
a
(i)
d

b
(i)
d

are then used to guess distances in
⋃n0−1

j=0 ∆ (Qj,i); solving

Analysis of reaction attacks against QC-LDPC code-based cryptosystems 13

the related DSDR problems gives the opponent proper candidates for the blocks
of Q. These candidates can then be used to build sets of candidates for QT ,
which will be in the form:

QT (x) =











xα0 q̃0(x) xαn0 q̃n0(x) · · · xαn0(n0−1) q̃n0(n0−1)(x)
xα1 q̃1(x) xαn0+1 q̃n0+1(x) · · · xαn0(n0−1)+1 q̃n0(n0−1)+1(x)

...
...

. . .
...

xαn0−1 q̃n0−1(x) x
α2n0−1 q̃2n0−1(x) · · · x

α
n2
0
−1 q̃n2

0−1(x),











(23)
where each polynomial q̃j(x) is obtained through the solution of the DSDR
problem (in order to ease the notation, the polynomial entries of QT (x) in (23)
have been put in sequential order, such that we can use only one subscript to
denote each of them). Let us denote as m̄ = [m0,m1, · · · ,mn0−1] the sequence
of weights defining the first row of w(Q), as explained in Section 2. The solutions
of the DSDR problem for the first row of QT will then give two polynomials for
each weight. The number of candidates for QT (x) depends on the distribution
of the weights in m̄: let us consider, for the sake of simplicity, the case of m0 =
m1, while all the other weights in m̄ are distinct. In this situation, the graph
associated to the DSDR problem will contain (at least) two couples of cliques
with size m0 = m1 (see Section 3.1). For the sake of simplicity, let us look at
the first row of QT (x): in such a case, the solution is represented by the sets
Γ (1) =

{

Θ∗(1), Θ′(1)
}

and Γ (2) =
{

Θ∗(2), Θ′(2)
}

, where each couple of cliques

Θ∗(i) and Θ
′(i) is described by (9). In order to construct a candidate for QT (x),

as in (23), the opponent must guess whether Γ (1) is associated to q̃0(x) (and
Γ (2) is associated to q̃n0(x)) or to q̃1(x); then, he must pick one clique from each
Γ (i). The number of candidates for the first row of QT (x) is hence 2n02! = 2n02.
Since there are n0 rows, the number of possible choices for the polynomials in

(23) is then equal to (2!)n02n
2
0 = 2n02n

2
0 . If we have m0 = m1 = m2, then

this number is equal to (3!)n02n
2
0 . In order to generalize this reasoning, we can

suppose that m̄ contains z distinct integers m̂0, m̂1, · · · , m̂z−1, with multiplicities
j0, j1, · · · , jz−1, that is:

ji = #l {ml = m̂i} . (24)

Thus, also taking into account the fact that for polynomials with weight ≤ 2 we
have only one candidate (instead of 2), the number of different choices for the
entries of QT (x) in (23) can be computed as:

NQ = 2n
2
0−n0n

(2)−n0n
(1)







z
∏

i=0
m̂i≥2

ji!







n0

, (25)

with n(2) and n(1) being the number of entries of m̄ that are equal to 2 and 1,
respectively. Considering (23), the i-th row of QT can be expressed as q̄i(x)Si(x),
with:

q̄i(x) =
[

q̃i(x), q̃n0+i(x), · · · , q̃n0(n0−1)+i(x)
]

, (26)

14 P. Santini, M. Baldi, F. Chiaraluce

and Si(x) being a diagonal matrix:

Si(x) =















xαi

xαn0+1+i

xα2n0+3+i

. . .

xαn0(n0−1)+i















. (27)

Let G′(x) denote the public key; then, the matrix G′′(x) = G′(x)QT (x) is a
generator matrix of the secret code. In particular, we have:

G′′(x) = G′(x)QT (x) =

=











1
1
. . .

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

g0(x)
g1(x)
...

gn0−2(x)











·











q̄0(x)S0(x)
q̄1(x)S1(x)

...
q̄n0−1(x)Sn0−1(x)











=

=











q̄0(x)S0(x) + g0(x)q̄n0−1(x)Sn0−1(x)
q̄1(x)S1(x) + g1(x)q̄n0−1(x)Sn0−1(x)

...
q̄n0−2(x)Sn0−2(x) + gn0−2(x)q̄n0−1(x)Sn0−1(x)











, (28)

where gi(x) denotes the polynomial representation of the circulant obtained as
(

H̃n0−1H̃i

)T

. The multiplication of every row of G′′(x) by whichever polynomial

returns a matrix which generates the same code as G′′(x). In particular, we can
multiply the first row of G′′(x) by x−α0 , the second row by x−α1 , and so on. The
resulting matrix can then be expressed as:

G(x) =











x−α0

x−α1

. . .

x−αn0−2











·G′′(x) =

=











x−α0 [q̄0(x)S0(x) + g0(x)q̄n0−1(x)Sn0−1(x)]
x−α1 [q̄1(x)S1(x) + g1(x)q̄n0−1(x)Sn0−1(x)]

...
x−αn0−2 [q̄n0−2(x)Sn0−2(x) + gn0−2(x)q̄n0−1(x)Sn0−1(x)]











. (29)

Taking into account (27), we can define:

S∗
i (x) = x−αiSi(x) =

=















1
xαn0+1+i−αi

xα2n0+3+i−αi

. . .

xαn0(n0−1)+i−αi















, (30)

Analysis of reaction attacks against QC-LDPC code-based cryptosystems 15

which holds for i ≤ n0 − 2. We can now express G(x) as:

G(x) =











q̄0(x)S
∗
0 (x) + g0(x)q̄n0−1(x)x

−α0Sn0−1(x)
q̄1(x)S

∗
1 (x) + g1(x)q̄n0−1(x)x

−α1Sn0−1(x)
...

q̄n0−2(x)S
∗
n0−2(x) + gn0−2(x)q̄n0−1(x)x

−αn0−1Sn0−1(x)











. (31)

As anticipated, G(x) is a generator matrix for the secret code, which means that
it admits H(x) as a corresponding sparse parity-check matrix. Then, any row of
the binary matrix corresponding to [h0(x), h1(x), · · · , hn0−1(x)] is a low-weight
codeword in the dual of the code generated by G(x). Thus, an opponent can
apply an ISD algorithm to search for vectors with weight n0dv, denoted as v̄(x)
in polynomial notation, such that G(x)v̄T (x) = 0. Finding one of these vectors
results in determining a row of the secret parity-check matrix.

For every non-singular matrix A(x), we can define G∗(x) = G(x)A(x) and
w̄(x) = v̄(x)A−T (x), such that:

G∗(x)w̄T (x) = G(x)A(x)w̄T (x) =

= G(x)A(x)A−1(x)v̄T (x) =

= G(x)v̄T (x) = 0. (32)

The opponent can apply ISD on G∗(x), searching for solutions w̄(x), and then
obtain the corresponding vectors v̄(x) as v̄(x) = w̄(x)AT (x). In particular, he
can choose A(x) = S∗−1

0 (x), that is:

A(x) =















1
xα0−αn0+1

xα0−α2n0+3

. . .

xα0−αn0(n0−1)















. (33)

Let us denote as ḡ∗i (x) the i-th row of G∗(x), and as ḡi(x) the i-th row of
G(x); we have:

ḡ∗i (x) = ḡi(x)A(x), (34)

which can be expressed as:

ḡ∗i (x) =
[

q̄i(x)S
∗
i (x) + gi(x)q̄n0−1(x)x

−αiSn0−1(x)
]

S∗−1
0 (x). (35)

For the first row of G∗(x) (i.e., i = 0), we have:

ḡ∗0(x) =
[

q̄0(x)S
∗
0 (x) + g0(x)q̄n0−1(x)x

−α0Sn0−1(x)
]

S∗−1
0 (x) =

= q̄0(x) + g0(x)q̄n0−1(x)x
−α0Sn0−1(x)S

∗−1
0 (x) =

= q̄0(x) + g0(x)q̄n0−1(x)D(x), (36)

with D(x) = x−α0Sn0−1(x)S
∗−1
0 (x) being a diagonal matrix with monomial

entries only. Once the polynomials q̄0(x) and q̄n0−1 have been picked, ḡ∗0(x)

16 P. Santini, M. Baldi, F. Chiaraluce

depends only on the values of the matrix D(x). This results in pn0 possible
different candidates for ḡ∗0(x).

We can now look at the other rows of G; in general, the i-th row (with i ≥ 1)
is in the form:

ḡ∗i (x) =
[

q̄i(x)S
∗
i (x) + gi(x)q̄n0−1(x)x

−αiSn0−1(x)
]

S∗−1
0 (x) =

= q̄i(x)S
∗
i (x)S

∗−1
0 (x) + gi(x)q̄n0−1(x)x

−αiSn0−1(x)S
∗−1
0 (x) =

= q̄i(x)S
∗
i (x)S

∗−1
0 (x) + gi(x)q̄n0−1(x)x

α0−αiD(x). (37)

From (37) we see that the row ḡ∗i (x) is defined by n0 independent parameters:
indeed, S∗

i (x)S
∗−1
0 (x) always has the first element equal to 1, with all the other

n0 − 1 ones taking values in [0, p− 1], while the only other additional degree of
freedom comes from the choice of (α0 − αi) ∈ [0, p− 1].

Based on the above considerations, we can finally obtain the total number of
candidates for G∗(x): starting from a choice of polynomials q̃0(x), · · · , q̃n2

0−1(x),

the opponent has pn0 independent possible choices for each row of G∗(x). Since
the matrix has n0 − 1 rows, the total number of candidates for G∗(x) is then
equal to:

NG = (pn0)
n0−1

= pn
2
0−n0 . (38)

For each candidate of G∗(x), the opponent performs ISD, searching for vectors
w̄(x). Since A(x) is a permutation, the weight of w̄(x) is equal to that of v̄(x).
Thus, the complexity of this last step is equal to that of ISD running on a code
with length n = n0p, dimension p (the opponent attacks the dual of the code
generated by G∗(x)), searching for a codeword with weight n0dv, and can be
denoted as CISD (n0p, p, n0dv).

As for the FHS+ attack, unless the DFR of the system is significantly low,
we can neglect the complexity of Algorithm 3, and estimate the complexity of
the FHZ attack as:

WFFHZ = NQ ·NG · CISD (n0p, p, n0dv) , (39)

where NQ and NG are given by (25) and (38), respectively.

4 Efficiency of reaction attacks

In the previous sections we have described reaction attacks against QC-MDPC
and QC-LDPC code-based McEliece cryptosystems. In particular, we have com-
puted the number of candidates an opponent has to consider for general choices
of the system parameters, and devised tight complexity estimations. Based on
the analysis developed in the previous sections, in this section we study and
compare the efficiency of all the aforementioned attack procedures. First of all,
we must consider the fact that the GJS attack can be applied to a QC-LDPC
code-based cryptosystem as well, on condition that Q-decoding is used for de-
cryption. In fact, as explained in section 2.4, the Q-decoder approximates a BF
decoder working in H̃, therefore an attacker could focus on H̃ as the target of a
reaction attack.

Analysis of reaction attacks against QC-LDPC code-based cryptosystems 17

Based on this consideration, we can expect the GJS attack to be successful
when Q-decoding is used: in such a case, the recovered distance spectrum is
that of H̃n0−1 (see eq. (2)). In order to verify this intuition, we have simulated
the attack on a code with parameters n0 = 2, p = 4801, dv = 9, m = 5.
The corresponding estimates ad

bd
, obtained through Algorithm 1, are shown in

Fig. 1. As we can see from the figure, the distances tend to group into distinct
bands, depending on the associated multiplicity in the spectrum. In this case,

0 500 1000 1500 2000 2500
0.094

0.095

0.096

0.097

0.098

0.099

0.1

0.101

0.102

0.103

Fig. 1. Distribution of the opponent’s estimates for a QC-LDPC code-based system
instance with n0 = 2, p = 4801, dv = 9, [m0,m1] = [2, 3], t = 95, decoded through the
Q-decoder. The estimates ad/bd correspond to the output of Algorithm 1.

the opponent can reconstruct the matrix H̃n0−1 by solving the related DSR
problem, searching for cliques of size ≤ mdv.

Instead, the same attack cannot be applied against a QC-LDPC code-based
system instance if BF decoding working on the private code is exploited. In order
to justify this fact, let us consider the generic expression of a block of H̃ , say
the first one:

h̃0(x) =

n0−1
∑

j=0

qj,0(x)hj(x) =

n0−1
∑

j=0

aj(x), (40)

with aj = qj,0(x)hj(x). Each aj(x) can be seen as a sum of replicas of hj(x)
(resp. qj,0(x)) placed at positions depending on qj,0(x) (resp. hj(x)). Since all
these polynomials are sparse, the expected number of cancellations occurring in
such a sum is small. This means that, with high probability, distances in qj,0(x)
or hj(x) are present also in aj(x). Since the BF decoder performance depends on
distances in bothH andQ, the opponent can correctly identify these distances by
analyzing Bob’s reactions. However, the spectrum of h̃0(x) also contains a new set
of inter-block distances, i.e., distances formed by one entry of ai(x) and one entry
of aj(x), with i 6= j. These distances cannot be revealed by the opponent, because
they do not affect the decoding performance when a BF decoder working on the

18 P. Santini, M. Baldi, F. Chiaraluce

0 100 200 300 400 500 600 700 800 900 1000
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Fig. 2. Distribution of the opponent’s estimates for a QC-LDPC code-based system
instance with n0 = 3, p = 2003, dv = 7, [m0,m1,m2] = [3, 2, 2], t = 12, decoded
through BF decoding working on the private QC-LDPC code. The estimates ad/bd
correspond to the output of Algorithm 1.

Table 1. Applicability of reaction attacks, for different McEliece variants

Attack Complexity QC-MDPC
QC-LDPC
(Q-decoder)

QC-LDPC
(BF decoder)

GJS Eq. (15) X X ✕

FHS+ Eq. (22) ✕ X X

FHZ Eq. (39) ✕ X X

private code is used. To confirm this statement, an example of the opponent
estimates, obtained though Algorithm 1 for a QC-LDPC code-based system
instance exploiting BF decoding over the private QC-LDPC code, is shown in
Fig. 2. From the figure we notice that, differently from the previous case, the
two sets of distances are indistinguishable.

We can now sum up all the results regarding reaction attacks against the
considered systems, and this is done in Table 1, where the applicability of each
attack against each of the considered systems is summarized, together with the
relevant complexity.

The QC-MDPC code-based system and the QC-LDPC code-based system
with Q-decoding are both exposed to the GJS attack. For these systems, such
an attack can be avoided only by achieving sufficiently low DFR values, which is
a solution that obviously prevents all reaction attacks. Another solution consists
in properly bounding the lifetime of a key-pair, which means that the same key-
pair is used only for a limited amount of encryptions/decryptions, before being
discarded. Basically, this is equivalent to assume that the opponent can only
exploit a bounded number of decryption queries. The most conservative choice
consists in using ephemeral keys, i.e., refreshing the key-pair after decrypting
each ciphertext [1, 5]. This choice allows avoiding reaction attacks of any type,
but necessarily decreases the system efficiency. Relaxing this condition would

Analysis of reaction attacks against QC-LDPC code-based cryptosystems 19

Table 2. Sets of parameters of QC-LDPC code-based system instances using BF de-
coding on the private code and achieving a security level of 280 or more against FHS+,
FHZ and ISD based attacks.

n0 dv p m̄ t

5 9 8539 [3, 3, 2, 2, 1] 38
5 9 7549 [3, 2, 2, 1, 1] 37
6 9 5557 [3, 2, 1, 1, 1, 1] 34
6 11 5417 [2, 1, 1, 1, 1, 1] 34

Table 3. Sets of parameters of QC-LDPC code-based system instances using BF de-
coding on the private code and achieving a security level of 2128 or more against FHS+,
FHZ and ISD based attacks.

n0 dv p m̄ t

8 9 13367 [2, 2, 2, 2, 2, 1, 1, 1] 45
8 11 14323 [2, 2, 2, 2, 2, 1, 1, 1] 44
9 9 10657 [2, 2, 1, 1, 1, 1, 1, 1, 1] 42
9 11 11597 [2, 2, 1, 1, 1, 1, 1, 1, 1] 42

obviously be welcome, but estimating a safe amount of observed ciphertexts
might be a hard task. A less drastic but still quite conservative choice might
be bounding the lifetime of a key-pair as DFR−1 (this means that, on average,
the opponent has only one decryption query for each key-pair). Actually, recent
proposals achieve DFR values in the order of 10−9 or less [5], resulting into very
long lifetimes for a key-pair.

When we consider classical BF decoding in the QC-LDPC code-based sys-
tem, the scenario is different. In such a case, for a non-negligible DFR, we have
to consider the complexities of both FHS+ and FHZ attacks. Since for both
attacks we have a precise estimation of the complexity, we can choose proper
parameters to achieve attack work factors that are above the target security
level. In Tables 2 and 3 we provide some parameter choices able to guarantee
that both reaction and ISD attacks have a complexity of at least 280 and 2128

operations, respectively. We point out that, when n0 increases, satisfying the
conditions that ensure non-singularity of Q according to Section 2.1 is no longer
possible. However, these conditions are sufficient but not necessary. This means
that, in some cases, the generation of Q should be repeated, until a non-singular
matrix is obtained. We point out that the use of the BF decoder obviously leads
to an increase in the code length (with respect to the Q-decoder), and this is
the price to pay for withstanding reaction attacks.

5 Conclusion

In this paper we have analyzed recent reaction attacks against McEliece cryp-
tosystems based on iteratively decoded codes. We have generalized the attack
procedures for all possible system variants and parameter choices, and provided
estimates for their complexity.

20 P. Santini, M. Baldi, F. Chiaraluce

For QC-MDPC code-based systems, preventing reaction attacks requires
achieving negligible DFR, and the same occurs for QC-LDPC code-based systems
exploiting Q-decoding. However, in the case of QC-LDPC code-based systems,
such attacks can be made infeasible by using the BF decoder and choosing proper
parameters. This choice comes with the inevitable drawback of increasing the
public key size, since the BF decoder is characterized by a worse performance
than the Q-decoder.

In our analysis we have neglected the fact that, in all the attacks against
QC-LDPC code-based systems using BF decoding, the opponent must solve
instances of the DSDR problem. This problem can be made more difficult by
appropriately choosing the distances in the spectrum of Q. In other words, we
can choose the blocks of Q such that the union of the spectra

⋃n0−1
j=0 (Qj,n0−1)

forms a clique having size larger than the maximum value appearing in m̄. In
this case, the number of solutions to the DSDR problem should be significantly
increased. This, however, is left for future works.

Acknowledgment

The authors wish to thank Tomáš Fabšič for fruitful discussion about the FHZ
attack.

References

1. Aragon, N., Barreto, P.S.L.M., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Gueron, S., Guneysu, T., Aguilar Melchor, C., Misoczki, R.,
Persichetti, E., Sendrier, N., Tillich, J.P., Zémor, G.: BIKE: Bit Flipping Key
Encapsulation (Dec 2017), http://bikesuite.org/, NIST Post-Quantum Cryp-
tography Project: First Round Candidate Algorithms

2. Baldi, M., Bodrato, M., Chiaraluce, F.: A new analysis of the McEliece cryp-
tosystem based on QC-LDPC codes. In: Security and Cryptography for Networks,
LNCS, vol. 5229, pp. 246–262. Springer Verlag (2008)

3. Baldi, M., Santini, P., Cancellieri, G.: Post-quantum cryptography based on codes:
State of the art and open challenges. In: 2017 AEIT International Annual Confer-
ence. pp. 1–6 (Sep 2017)

4. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: LEDApkc: Low dEn-
sity coDe-bAsed public key cryptosystem (Dec 2017), https://www.ledacrypt.
org/, NIST Post-Quantum Cryptography Project: First Round Candidate Algo-
rithms

5. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: LEDAkem: A post-
quantum key encapsulation mechanism based on QC-LDPC codes. In: Lange, T.,
Steinwandt, R. (eds.) Post-Quantum Cryptography, LNCS, vol. 10786, pp. 3–24.
Springer International Publishing, Cham (2018)

6. Baldi, M., Bianchi, M., Chiaraluce, F.: Security and complexity of the McEliece
cryptosystem based on QC-LDPC codes. IET Inf. Security 7(3), 212–220 (Sep
2012)

7. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012, LNCS, vol.
7237, pp. 520–536. Springer Verlag (2012)

Analysis of reaction attacks against QC-LDPC code-based cryptosystems 21

8. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (May 1978)

9. Bernstein, D.J.: Grover vs. mceliece. In: PQCrypto (2010)
10. Eaton, E., Lequesne, M., Parent, A., Sendrier, N.: QC-MDPC: A timing attack and

a CCA2 KEM. In: Post-Quantum Cryptography - 9th International Conference,
PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings. pp.
47–76 (2018), https://doi.org/10.1007/978-3-319-79063-3_3

11. Fabšič, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q., Johansson, T.: A
reaction attack on the QC-LDPC McEliece cryptosystem. In: Lange, T., Takagi,
T. (eds.) Post-Quantum Cryptography: 8th International Workshop, PQCrypto
2017, pp. 51–68. Springer, Utrecht, The Netherlands (Jun 2017)

12. Fabsic, T., Hromada, V., Zajac, P.: A reaction attack on ledapkc. Cryptology ePrint
Archive, Report 2018/140 (2018), https://eprint.iacr.org/2018/140

13. Gallager, R.G.: Low-Density Parity-Check Codes. M.I.T. Press (1963)
14. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA

security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, LNCS, vol. 10031, pp. 789–815. Springer Berlin Heidelberg (2016)

15. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems —
conversions for McEliece PKC. LNCS 1992, 19–35 (2001), citeseer.ist.psu.edu/
kobara01semantically.html

16. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in O(20.054n). In:
ASIACRYPT 2011, LNCS, vol. 7073, pp. 107–124. Springer Verlag (2011)

17. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report pp. 114–116 (1978)

18. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: New
McEliece variants from moderate density parity-check codes. In: 2013 IEEE Inter-
national Symposium on Information Theory. pp. 2069–2073 (July 2013)

19. National Institute of Standards and Technology: Post-quantum crypto project (Dec
2016), http://csrc.nist.gov/groups/ST/post-quantum-crypto/

20. Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory 8(5), 5–9 (Sep 1962)

21. Shooshtari, M.K., Ahmadian-Attari, M., Johansson, T., Aref, M.R.: Cryptanalysis
of McEliece cryptosystem variants based on quasi-cyclic low-density parity check
codes. IET Information Security 10(4), 194–202 (Jun 2016)

22. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolf-
mann, J. (eds.) Coding Theory and Applications, LNCS, vol. 388, pp. 106–113.
Springer Verlag (1989)

