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Abstract. We propose SLAC, a sparse approximation to a Lipschitz
constant estimator that can be utilised to obtain uncertainty bounds
around predictions of a regression method. As we demonstrate in a series
of experiments on real-world and synthetic data, this approach can yield
fast and robust predictive uncertainty bounds that are as reliable as
those of Gaussian Processes or Bayesian Neural Networks, while reducing
computational effort markedly.

Keywords: Predictive Uncertainty Bounds · Regression · Lipschitz In-
terpolation

1 Introduction and Background

Machine learning methods are typically utilised in regression tasks where little is
known a priori and one prefers ‘black-box’ approaches that are endowed with
the capacity to flexibly learn rich function classes. However, when regression
methods are employed in decision making, quantifying the uncertainty around
predictions can often be key. While many such methods exist, uncertainty bounds
often rest on assumptions that are hard to establish a priori, necessitating either
manual or optimisation based tuning approaches to yield sufficient black-box
learning capabilities. Unfortunately, this renders the bounds less interpretable
and typically, the computational effort intractable for many applications.

We consider two widely used methods that offer uncertainty quantifications,
Gaussian Processes (GPs) [1] and Bayesian Neural Networks (BNNs) [2]. In re-
gression, both approaches compute Gaussian posterior input-output relationships
that allow the usage of subjective confidence intervals around predictions for a
given input as uncertainty bounds. As with all Bayesian methods, the problem is
that these subjective bounds, as well as the pertaining predictions, are contingent
on a priori choices such as the nature of the probability space and the prior
distribution. In GPs, these are encoded in the kernel and mean functions (as well
as their hyper-parameters). In BNNs, the prior is encoded by the architecture of
the network, as well as by the hyperparameters, particularly the dropout rate.

To facilitate black-box learning and to avoid hand-tuning, approaches for
model selection involve optimising these a priori choices to maximise some data-
dependent criterion function such as the marginal log-likelihood. Unfortunately,
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this pragmatic approach has undesirable side-effects. Firstly, it can greatly inflate
the computational effort required for training and make these approaches too
slow to use to derive uncertainty bounds in online, or quickly changing, settings
where frequent model re-training is necessary. Secondly, since also the optimiser
(and its initialisations) becomes part of the training algorithm, the uncertainty
bounds become dependent on the optimiser’s solution (with its performance often
dependent on initialisations). This makes the interpretation of the uncertainty
bounds questionable and their accuracy has to be assessed empirically on a case
by case basis.

While we might argue that the tension between the desire to have reliable
uncertainty bounds and fast, reliable black-box learning can never be fully
reconciled, in this paper we present our early work on SLAC (Sparse Lazily
Adapted Lipschitz-Constant) uncertainty bounds as an approach to ameliorate
this tension. Conceived from black-box learners whose training is magnitudes
faster and simpler than for existing methods, SLAC bounds demonstrably serve
their purpose in practice: on a range of benchmark comparisons against GPs
and BNNs, they compare favourably against their competitors both in terms of
computational time and the reliability of their uncertainty bounds. Code for the
experiments described in this paper can be found online 1.

2 Task and Approach

In supervised Machine Learning applications, we typically desire to learn from
a set of training points Dn :“ tpsi, fpsiqq|i “ 1, . . . , nu Ă pX ,Yq, generated by
some unknown target function f in order to predict its values for new test points
Tq :“ tpti|i “ 1, . . . , qu Ă X . In many real-world applications it is necessary
that these predictions can reliably quantify uncertainty. For standard regression
problems, where X Ă Rd and Y Ă R, this typically translates to finding two
functions lp¨q ď up¨q such that @x P X : Pr plpxq ď fpxq ď upxq|Dnq “ 1 ´ δ,
with δ P r0, 1q. For safety critical applications δ « 0 is the most important case
as in these applications we ultimately wish to bound the uncertainty with high
probability and thereby (almost) replace it with certainty. We thus use the phrase
uncertainty bounds (or simply bounds) for lp¨q and up¨q to indicate δ « 0.

2.1 Definition of our Model

Our model is originally inspired by the deterministic bounds (i.e. δ “ 0) that
can be inferred if f is known to be Lipschitz-continuous with best Lipschitz-
constant L˚ with respect to some metrics d : X 2 Ñ Rě0, dY : Y2 Ñ Rě0 ,
which is defined as L˚ being the smallest value for which it holds that @x, x1 P
X : dYpfpxq, fpx

1qq ď L˚dpx, x1q. In this case, Sukharev [3] has shown that with

1 https://github.com/arblox/SLAC
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bounds defined as

uL˚px;Dnq :“ min
siPXn

pfi ` L
˚dpsi, xqq

lL˚px;Dnq :“ max
siPXn

pfi ´ L
˚dpsi, xqq, (1)

it holds for all x P X that

lL˚px;Dnq ď fpxq ď uL˚px;Dnq. (2)

Unfortunately, in most regression problems L˚ is unknown. Still, in light of this
strong guarantee when L˚ is known, we stick to the prior assumption that our
target function f is Lipschitz-continuous to define our model. It is worth noting
that this Lipschitz-continuity assumption is actually implicitly shared by many
other models, including many popular neural network based models [4]. However,
as opposed to such models, we are only interested in the quality of uncertainty
bounds, and thus do not assume one potential function value to be more likely
than another as long as they both lie inside the uncertainty bounds of our model.
That is, we assume a uniform distribution between the prediction bounds of our
model. With bounds of the form in Eqns. (1), this yields in the following model
for inference at x P X :

fpx;Ln,Dnq „ UplLnpx;Dnq, uLnpx;Dnqq, (3)

where Ln acts as a hyperparameter to be learned from the data.

2.2 Uncertainty Bounds with Lazily Adapted Constants

The canonical approach to learn Ln for our model is to lazily adapt it, i.e. to
set it to the smallest value that is compatible with the hypothesis that f is
Ln´Lipschitz-continuous (hence LAC, Lazily Adapted Constant). This approach,
which comes from Lipschitz Interpolation literature [5,6], yields

LLAC
n :“ max

si,sjPXn

dYpfi, fjq

dpsi, sjq
, (4)

as resulting estimator of L˚, i.e. the maximum slope observable in the available
training data. It can be easily shown that lLLAC

n
px;Dnq ď uLLAC

n
px;Dnq for all

x P X , hence the resulting model is well-defined.

2.3 Computational Complexity and Sparse Approximation

Naturally, the computational complexity for computing LLAC
n from scratch is

Opn2q [5]. While this natural quadratic scalability is better than the natural
cubic computational cost of GPs [1], it is still prohibitive for truly large data sets.
This is why we introduce a simple sparse approximation which is inspired by
Strongin’s estimator for the one-dimensional case [6]: after ordering all training
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points such that s1 ă s2 ă . . . ă sn it can be seen from elementary analysis that
LLAC
n “ max2ďiďn

dYpfi,fi´1q

dpsi,si´1q
, which only requires Opnq operations. For higher

dimensions, we similarly apply the idea of only inspecting the slopes between
ordered points. Randomly drawing J permutations πj : t1, . . . , nu Ñ t1, . . . , nu,

we evaluate LLAC
n pjq :“ max2ďiďn

dYpfπjpiq,fπjpi´1qq

dpsπjpiq,sπjpi´1qq
and set the sparse lazily

adapted constant (SLAC) to be

LSLAC
n :“ max

j
LLAC
n pjq “ max

j
max
2ďiďn

dYpfπjpiq, fπjpi´1qq

dpsπjpiq, sπjpi´1qq
. (5)

Obtaining LSLAC
n is OpnJq, where in our experiments (Section 3) we found that

the bounds for J “ 100 are comparably conservative to those of LLAC
n , which

massively speeds up training for larger data sets and made LSLAC
n by far the

fastest method overall.
By definition, it is clear that LSLAC

n ď LLAC
n . A problem that naturally arises

with this sparse approximation for values of LSLAC
n ă LLAC

n is that in these
cases the model might not be not well-defined everywhere. In such cases it can
happen that lLSLAC

n
px;Dnq ą uLSLAC

n
px;Dnq for some regions in X . Therefore we

define D̃n Ă Dn to be the subset of training points for which lLSLAC
n

px; D̃nq ď
uLSLAC

n
px; D̃nq for all x P X . This makes the resulting sparse model:

fpx;LSLAC
n ,Dnq „ UplLSLAC

n
px; D̃nq, uLSLAC

n
px; D̃nqq. (6)

3 Experiments

3.1 Data Sets

Real-World Data. We tested the performance of the SLAC uncertainty bounds
on 8 multidimensional real-world regression data sets of between 300 and 45000
data points, that are publicly available in the UCI machine learning repository.
Each data set was randomly split into training and testing set accounting for 80%
and 20% of the data respectively and centred and normalised using the training
set mean and standard deviation.

Synthetic Data. Additionally, we demonstrated the robustness of the perfor-
mance of the uncertainty bounds of our model, by pressure-testing it on a set of
100 synthetic functions on the interval r´1, 1s with Lipschitz-constants ranging
between 14.7 and 129.8. These were generated by randomising the weights of a
2-hidden-layer neural network with 2886 units in the first hidden layer and 577
units in the second hidden layer. Each function was converted into a data set
of 1000 data points on an equally spaced grid over r´1, 1s, from which we cut
out test sets of 200 data points corresponding to the intervals r´0.94,´0.86s,
r´0.60,´0.52s,r´0.42,´0.34s,r´0.12,´0.04s, and r0.20, 0.28s.
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Table 1: Characteristics of data and comparison of training times across UCI
data sets. We denote with * values for which sparse GPs were used. SLAC was
consistently by far the fastest method on all data sets and its advantage over
LAC is most evident on the biggest data sets. Earlier stopping of optimisation
during BNN training was found to result in less consistent bounds across data
sets.

Size of Data Average Training Time in Seconds

Data Set Data
Points

Dimen-
sions GP BNN LAC SLAC

Boston Housing 504 13 23 (4) 724 (195) 1 0.4 (0)
Concrete Strength 1,030 8 30 (7) 1.488 (430) 4 1 (0)
Energy Efficiency 768 8 16 (3) 2,733 (1,100) 2 1 (0)
Kin8nm 8,192 8 177* (41) 23,879 (5,499) 242 11 (0)
Naval Propulsion 11,934 16 159* (117) 28,049 (6,978) 536 22 (1)
Power Plant 9,568 4 248* (27) 23,395 (7,390) 332 14 (0)
Protein Structure 45,730 9 1,295* (134) 59,689 (11,180) 14,158 43 (3)
Yacht Dynamics 308 6 47 (3) 982 (388) 0.4 0.3 (0)

3.2 Experimental Setup

Our Model. We used Euclidean distance as metric for X and Y. For SLAC, J
was set to 100 and training was done 10 times repeatedly on each training set to
analyse its sensitivity to the random seed used for drawing the permutations πj .

Baselines. For the GPs, we assumed Gaussian noise. We used the automatic
relevance determination (ARD) versions of the squared exponential (SE), the
Matern32 and the Matern52 covariance functions. Training was done by marginal
likelihood maximisation as implemented in the GPflow package. For data sets with
more than 2000 training points, we resorted to sparse approximations through
variational inference as proposed in [7] using 250 inducing points. For the real-
world data sets, we performed 10 random initialisations for each training process
to inspect the stability of the prediction bounds with respect to optimisation
initialisation. For the BNNs, we used three different architectures with ReLu
activation functions, labelled low, medium and high, with respectively 2, 3 and 4
hidden layers of 1, 024 units each. We used MC dropout [2] to approximate the
posterior. As the model precision τ is vital for calibrating the uncertainty bounds
with MC dropout, we selected it together with the lengthscale l by maximising the
log-likelihood employing the sample efficient technique of Bayesian optimisation
implemented in GPyOpt. Furthermore, we set dropout to 0.1 after experimenting
empirically over the training data. For both baselines, we analysed both the
three standard deviation bounds (δ “ 0.003) and four standard deviation bounds
(δ “ 0.00006).
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Table 2: Comparison of uncertainty bounds across UCI data sets. For GPs and
BNNs the uncertainty bounds are for δ “ 0.003. With more than 99% of test
points in bounds for most data sets, SLAC bounds are about as conservative as
the three standard deviation bounds of GPs and BNNs. Average distance between
bounds for SLAC is larger on many data sets, but overall still comparable. On
the Concrete Strength, Power Plant, and Protein Structure data set, we suspect
noise in the data causes LAC bounds to be unacceptably wide. However, SLAC
seems to be more robust to noise by not evaluating every possible slope.

% Test Points in Bounds Avg. Distance of Bounds
Data Set GP BNN LAC SLAC GP BNN LAC SLAC
Boston Housing 97.1 (0.0) 98.0 (0.5) 100 100 (0.0) 1.5 (0.0) 2.3 (1.1) 5.7 5.2 (0.4)
Concrete Strength 96.6 (33.6) 99.5 (0.2) 97.6 98.2 (0.8) 1.6 (0.6) 2.5 (1.5) 20.4 15.3 (3.4)
Energy Efficiency 98.7 (0.5) 100 (0.0) 100 99.5 (1.2) 0.2 (69.1) 4.5 (1.9) 2.5 2.5 (0.1)
Kin8nm 99.5 (0.2) 100 (0.1) 99.9 99.6 (0.2) 2.2 (1.1) 2.5 (3.5) 4.7 3.6 (0.5)
Naval Propulsion 100 (0.0) 100 (0.0) 100 99.4 (0.4) 5.9 (69.1) 5.1 (1.1) 1.7 1.3 (0.3)
Power Plant 99.4 (0.1) 100 (0.1) 100 99.4 (0.6) 1.7 (1.1) 8.2 (2.4) 14.6 4.5 (3.5)
Protein Structure 100 (0.1) 95.8 (0.8) 99.8 99.5 (0.3) 4.8 (0.1) 2.6 (0.2) 60.2 8.4 (2.0)
Yacht Dynamics 98.4 (33.0) 100 (0.0) 98.4 97.7 (0.8) 0.1 (5583.7) 2.2 (0.1) 2.3 2.3 (0.1)

Evaluation Metrics. In order to assess the quality of the uncertainty bounds,
we apply two criteria. Firstly, we assess whether the bounds are conservative
enough. To evaluate this we computed the ratio of test points inside the bounds,
|ttjPTq |lptjqďfptjqďuptjqu|

|Tq |
and compare this to 1 ´ δ. For the synthetic data, we

additionally analysed the number of functions that are entirely inside the un-
certainty bounds of a model over the test set intervals. Secondly, we assess how
tight the bounds are. Whilst from a risk analysis perspective, conservativeness
is most important, it is obvious that useful uncertainty bounds should be as
close together as possible while achieving the desired conservativeness. We thus

computed the average distance of the bounds on the test set,
ř

tjPTq
|uptjq´lptjq|

|Tq |
,

and prefer smaller average distance conservative bounds.

4 Results and Discussion

The results of our experiments are shown in Tables 1 - 3. For brevity, we only
show the three standard deviation bounds (δ “ 0.003) for GPs and BNNs.
The four standard deviation bounds (δ “ 0.00006), omitted here, had identical
training times and were 33% wider, which resulted in 99%´ 100% of test points
being inside these bounds for all data sets. In summary, we found across both
types of data that training our sparse model to calculate the SLAC bounds was
magnitudes faster than training sophisticated models like GPs or BNNs (Table
1). The resulting SLAC bounds were comparable in performance to the three
and four standard deviation bounds of GPs and BNNs, especially in terms of
conservativeness, which seemed to be a reliable feature of SLAC bounds (Tables
2, 3). Their average distance was roughly the same as for BNNs and usually
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Table 3: Comparison of uncertainty bounds across 100 random functions. For
GPs and BNNs the bounds are for δ “ 0.003. In the one-dimensional case, LAC
= SLAC as the training inputs can be ordered by value. Again, training for
SLAC is by far the fastest and yields bounds which are comparable to the three
standard deviation bounds of GPs and BNNs in terms of conservativeness and
tightness.

Training Time Bound Performance

Method Avg. Time in s % Test Points
in Bounds

Avg. Distance
of Bounds

Functions
in Bounds

GPSE 29.5 98.6 (2.9) 1.96 (0.27) 73
GPMatern32 28.6 90.3 (7.3) 0.30 (0.12) 13
GPMatern52 29.2 97.5 (4.0) 0.50 (0.20) 56
LLAC{SLAC 0.03 99.8 (0.8) 1.84 (0.92) 92
BNN low 4.6 98.5 (5.2) 8.98 (8.17) 88
BNNmedium 11.6 99.7 (1.5) 5.80 (6.59) 93
BNNhigh 17.8 100.0 (0.0) 18.98 (0.00) 93

about twice as large as for GPs. However, noisy data caused this distance to be
unnecessarily large. Nevertheless, SLAC was able to cope with such data better
than LAC due to its sparsity (Table 2), as not every slope in the training data
was taken into account.

Overall this is still early work and there are a number of topics which we plan
to investigate in the future. In particular, we desire to investigate the effect of J
more rigourously. It seems beneficial to find theoretical guarantees for how big it
needs to be for a given desired conservativeness and also to analyse its choice to
make the SLAC bounds more robust to noise in the data. However, our results
already provide empirical evidence that SLAC bounds with J “ 100 can be a
fast, stable and reliable alternative to three to four standard deviation bounds of
GPs and BNNs.
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