
ar
X

iv
:1

80
6.

08
29

8v
1 

 [
cs

.L
O

] 
 2

1 
Ju

n 
20

18

A Credal Extension of Independent Choice Logic

Alessandro Antonucci and Alessandro Facchini

Istituto Dalle Molle di Studi Sull’Intelligenza Artificiale (IDSIA)

Lugano (Switzerland)

{alessandro,alessandro.facchini}@idsia.ch

Abstract. We propose an extension of Poole’s independent choice logic based

on a relaxation of the underlying independence assumptions. A credal semantics

involving multiple joint probability mass functions over the possible worlds is

adopted. This represents a conservative approach to probabilistic logic program-

ming achieved by considering all the mass functions consistent with the prob-

abilistic facts. This allows to model tasks for which independence among some

probabilistic choices cannot be assumed, and a specific dependence model cannot

be assessed. Preliminary tests on an object ranking application show that, despite

the loose underlying assumptions, informative inferences can be extracted.

Keywords: Probabilistic logic programming · Imprecise probabilities · PSAT ·
Independence.

1 Introduction

Probabilistic logic programming (PLP) is an emerging area in AI research aiming to

develop reasoning tools for relational domains under uncertainty [9]. PLP can be ei-

ther intended as a combination of logic programs with probabilistic statements, or a

part of the wider current interest in probabilistic programming [4] specialised to highly

structured probability spaces. After some early proposals such as Probabilistic Horn

Abduction [26] and Independent Choice Logic [27], Distribution Semantics [28] and

Probabilistic Datalog [14], PLP is currently subject of intense research as well as the

theoretical basis for many real-world applications [8].

Most of these theories make assumptions such as the program acyclicity and the

mutual independence of the probabilistic facts. This leads to the specification of a single

probability mass function over the possible words (least models) associated to the logic

program. In more recent times, several approaches are trying to go beyond some of these

assumptions, but without giving away independence. In some of these cases [7,22],

this leads to the adoption of a credal semantics, i.e., a PLP does not define a single

mass function but a set of joint mass functions over the least models. In this paper we

propose a different path consisting in a generalisation of Poole’s independent choice

logic which keeps the acyclicity condition on programs, but relaxes the independence

assumptions. Such an extension can be intended as a credal, conservative, semantics

considering all the joint mass functions over the least models being also consistent with

the probabilistic facts. To introduce our motivations for such proposal, consider the

following example.

http://arxiv.org/abs/1806.08298v1


2 Alessandro Antonucci and Alessandro Facchini

Example 1. Two urns contain red, green and blue balls. Let µ1 = [0.60; 0.30; 0.10] and

µ2 = [0.20; 0.35; 0.45] denote the normalised proportions of the colours in the urns.1

Assuming that a ball is randomly drawn from each urn, the joint probability over the

nine possible outcomes is the left matrix in Table 1. The matrix on the right corresponds

to a different situation in which a ball is randomly drawn from the first urn, while the

second ball is required to have a colour different from that of the first. To achieve that,

an unbiased coin is flipped to decide which one of the two permitted colours should be

picked. Both joint mass functions are consistent with the above marginal probabilities

(i.e., the sums of the rows/columns are the values in µ1 and µ2).

← ball1→
0.120 0.210 0.270 0.000 0.300 0.300
0.060 0.105 0.135 0.150 0.000 0.150
0.020 0.035 0.045 0.050 0.050 0.000

↑
ball2

Table 1. Two joint mass functions over two ternary variables sharing the same marginal probabil-

ities. Dark grey cells corresponds to a query of interest (first ball non-red, second ball non-green).

This trivial example makes clear that marginal probabilities are in general not suf-

ficient to uniquely determine a joint mass function unless additional assumptions, such

as independence or an explicit dependence, are made. If no further assumptions can

be made, the most conservative approach corresponds to consider all the joint mass

functions consistent with the constraints and computing inferences with respect to the

multiple probabilistic specification. This is clarified by the following example.

Example 2. With the same setup as in Example 1, we want to compute the probability

of having the first ball not red and the second not green. Assuming independence, this

query has probability (1−µ1(r))(1−µ2(g)) = 0.56. The same result can be obtained

by summing the (consistent) dark grey values in the matrix on the left of Table 1. Under

the coin-based dependence relation, the result becomes instead 0.65 (sum of the dark

grey values in the matrix on the right). With no dependence/independence assumptions,

the probability of the query can be only said to belong to the interval [0.5, 0.7]. These

values are the maximum and the minimum obtained from a linear programming task

involving the nine joint probabilities as optimisation variables and the consistency with

the marginals (together with non-negativity and normalization) as linear constraints.

The feasible region of the linear programming task in the above example is a con-

vex set of (joint) probability mass functions, i.e., a credal set [3,20]. Inferences based

on credal sets are conservatively intended as the computation of the lower/upper bounds

1 We use semicolons to separate the elements of an array and commas to separate the two bounds

of an interval.



A Credal Extension of Independent Choice Logic 3

of the query with the mass function varying in the credal set. The interval estimate is

also called imprecise probability. When coping with relational domains, adding inde-

pendence statements leading to a unique, “precise”, specification might be not always a

tenable assumption, and the imprecise-probabilistic technique we present in this paper

can be regarded as the most conservative approach to the modeling of a condition of

ignorance about the dependencies among the atoms in a program.

After reviewing some necessary background concepts in Section 2, our proposal is

first introduced by an example in Section 3 and then formalised as a theory in Section 4.

An inference algorithm is derived in Section 5, while the results of some preliminary

experiments are reported in Section 6. Conclusions and outlooks are in Section 7.

2 Background

We review here some background information about logic programming and its proba-

bilistic extension.

Logic Programming. A term t is defined as being either a constant or a variable. An

atom r(t1, . . . , tk) is thence obtained by applying a relational symbol r to a sequence

of terms t1, . . . , tk. We identify Boolean propositional variables with 0-ary predicates.

An atom a or its negation ¬a is called a literal. A clause has form

a0 ← a1, . . . , am,¬am+1, . . . ,¬an , (1)

where ai are atoms for each i = 0, . . . , n, a0 is called the head of the clause, while

the other atoms are the body. Facts are clauses with empty body. If a clause is not a

fact is called a rule. A ground atom (literal, clause) is an atom (literal, clause) that does

not contain any variable. The grounding of a clause is a clause obtained by uniformly

replacing constants for the variables in the considered clause. A logic program P is a

finite set of clauses. The Herbrand base of a program is the set of all ground instances

of atoms in the program. A query Q for a program P is a set of ground literals whose

positive part belong to the Herbrand base of P. A logic program is acyclic if there is

an assignment of a positive integer to each element of the Herbrand base such that for

every grounding of a rule the number assigned to the head is greater then each number

assigned to an element of the body. An interpretation ι of a program P is a function

assigning a truth value to each member of the Herbrand base for P. An interpretation ι

is said to be a stable model for P if for every ground atom a, a is true in ι if and only if

a is a fact in P or it is the head of the grounding of a rule in P whose base is true in ι.

A negation ¬a is true in ι if and only if the atom a is not true in ι.

The following classical result [2] is used in the rest of the paper.

Proposition 1. An acyclic logic program has a unique stable model.

Probabilistic Logic Programming. There are different ways of representing probabilis-

tic information with logic programming. A possible approach is to annotate or ex-

tend clauses with probabilities (see, e.g., [21,24]). Another, nowadays very popular,

approach consists in adding to a logic program independent probabilistic alternatives



4 Alessandro Antonucci and Alessandro Facchini

representing mutually independent random events with a finite number of different out-

comes, such as tossing a coin or rolling a die. Within this latter stream, various lan-

guages have been proposed such as PRISM [28], ICL [27], pD [15], LPAD [30] or

ProbLog [10]. Despite the differences in their syntactical presentation, under Sato’s

distribution semantics all these formalisms are in general comparable in their expres-

sive power [29]. In this work we focus on Poole’s ICL. The choice of this formalism,

rather than another among the languages listed above, is due to the fact that its explicit

set-theoretical formulation of probabilistic choices will simplify the presentation of our

approach. ICL syntax and semantics are introduced here below.

Independent Choice Logic (ICL). An ICL theory is a triple 〈P,C, µ〉 such that:

– P is an acyclic logic program.
– C, called the choice space, is a family of non-empty sets of ground atoms. The

elements of C are called alternatives, and the elements of each alternative atomic

choices. Atomic choices from the same or different alternatives cannot unify with

each other, nor with the head of any clause in P.
– µ specifies a probability mass function over each alternative, i.e., µ :

⋃

C∈C
C →

[0, 1] with
∑

a∈C µ(a) = 1 for each C ∈ C.

The following example demonstrates the ICL syntax.

Example 3. Consider the setup of Example 1 under the assumption of independence

between the colours of the two balls (Table 1 left). Let a
j
i denote the Boolean variable

true if and only if the colour j has been drawn from the i-th urn. The example cor-

responds to an ICL theory over the ground atoms {aji}
j=r,g,b
i=1,2 . The logical program is

empty, i.e., P = ∅, as the logical constraints over the atoms can be directly embedded

in the choice space C. Such a space contains two alternatives, i.e., C := {C1, C2},
with Ci = {a

r
i , a

g
i , a

b
i} for each i = 1, 2. Finally, the probabilities are directly obtained

from the marginals, i.e., µ(Ci) = µi for each i = 1, 2.

ICL semantics is defined in terms of possible words. A total choice c for the choice

space C is a choice function selecting exactly one atomic choice from each alternative

in C, and we associate to c a possible world ωc. For each total choice c the program

P ∪ {a ←| a ∈ image(c)} is acyclic, and therefore by Proposition 1 it has a unique

stable model ιc. We thence say that an atom a is true at ωc, written ωc |= a, if a is true

in ιc, and states ωc |= ¬a if ωc 6|= a. Given a query Q, we write ω |= Q whenever

ω |= q, for any member of q ∈ Q.

As alternatives are assumed to be independent, a ICL theory defines a unique mass

function µ′ over the collection Ω of all the possible worlds as follows:

µ′(ωc) :=
∏

a∈image(c)

µ(a) ·
∏

a/∈image(c)

(1− µ(a)) . (2)

Example 4. The ICL theory in Example 3 has nine possible worlds corresponding to the

elements of C1 ×C2. For each ω, the associated probability assigned by µ as in Equa-

tion (2) reproduces the value in Example 1. The query in Example 2 is Q := {¬ar1,¬a
g
2}

and it is true only in four possible worlds. The corresponding success probability is

µ′(Q) =
∑

ω|=Q µ′(ω) = 0.210 + 0.270 + 0.035 + 0.045 as in Example 2.



A Credal Extension of Independent Choice Logic 5

3 A Motivating Example

Consider a possibility space determined by the fact that, on a working day, a person

called Andrea is using her car or not, she is working late or not, and that in Milan,

the city where she is living, it is raining or not. We denote by r the atomic fact that it

rains in Milan, by c the fact that she uses the car, and by w the fact that she is working

late. Hence, the elements of the possibility space we consider correspond to the eight

possible worlds associated with r, c, w in Table 2, where t denotes true and f false.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

r (Rain in Milan) t t t t f f f f

c (Andrea using her car) t t f f t t f f

w (Andrea working late) t f t f t f t f

µ′(ωi) 0.01 0.04 0.01 0.04 0.09 0.36 0.09 0.36

µ(1)(ωi) 0.1 0.0 0.0 0.0 0.0 0.4 0.1 0.4

µ(2)(ωi) 0.1 0.0 0.0 0.0 0.1 0.3 0.0 0.5

µ(3)(ωi) 0.0 0.1 0.0 0.0 0.0 0.4 0.2 0.3

µ(4)(ωi) 0.0 0.1 0.0 0.0 0.2 0.2 0.0 0.5

µ(5)(ωi) 0.0 0.0 0.1 0.0 0.1 0.4 0.0 0.4

µ(6)(ωi) 0.0 0.0 0.1 0.0 0.0 0.5 0.1 0.3

µ(7)(ωi) 0.0 0.0 0.0 0.1 0.2 0.3 0.0 0.4

µ(8)(ωi) 0.0 0.0 0.0 0.1 0.0 0.5 0.2 0.2

Table 2. A possibility space as a set of possible worlds, and nine mass functions over it.

Let us compute the probability that Andrea will hang out with friends under the

following assumptions.

– The probability of rain in Milan is 0.1, that for Andrea using her car 0.5 and that

for her working late 0.2.

– If Andrea is with her car or it is raining, she will visit her parents.

– If she is neither visiting her parents nor working late, then she will be hanging out

with friends.

Let p denote the fact that Andrea visits her parents, and h the fact associated to her

hanging out with friends. In a PLP dialect such as ICL, if we introduce symbols nr, nc

and nw to denote the complementary atomic facts associated respectively to r, c and w,

the example corresponds to a theory with:

– C = {C1, C2, C3}, with alternatives C1 = {r, nr}, C2 = {c, nc}, C3 = {w, nw};
– µ(r) = 0.1, µ(nr) = 0.9, µ(c) = 0.5, µ(nc) = 0.5, µ(w) = 0.2, µ(nw) = 0.8;

– and P = {p← c, p← r, h← ¬p, nw}.

Hence, for instance, ωi |= c if and only if ωi 6|= nc if and only if ωi 6|= ¬c, with

i ∈ {1, . . . , 8}. It also holds that ωi |= p, for i ∈ {1, . . . , 6} and ωi |= ¬p, for



6 Alessandro Antonucci and Alessandro Facchini

i = 7, 8. Similarly ω8 |= h and ωi |= ¬h for i 6= 8. Since alternatives are as-

sumed to be independent, a unique probability mass function µ′ (see Table 2) is defined

over Ω := {ω1, . . . , ω8} and, for instance, the success probability of the query h is

µ′(ω8) := 0.9 · 0.5 · 0.8 = 0.36. Yet, it is easy to identify realistic situations in which

such independence assumptions are violated. E.g., Andrea using her car might be not

independent of raining in Milan. While the modelling of a deterministic dependence

(e.g., c ← r) or a probabilistic influence (e.g., µ(c | r) = 0.95 and µ(c | nr) = 0.45)

can be described in standard PLPs, a condition of complete ignorance about the rela-

tions between two or more atomic facts requires a generalisation of the semantics. For

instance, if we do not make any assumption about the (in)dependence relations among

the possible choices corresponding to the three variables in our example, the whole set

of mass functions consistent with the marginals is the convex hull of the eight mass

functions {µ(i)}8i=1 in Table 2 and the probability of the query h can only be said to

belong to the range [0.2, 0.5]. This interval shrinks to [0.32, 0.40] if no assumptions can

be made about the independence between choices on elements of C1 and choices on

elements of C2, but both are assumed to be independent with respect to choices on C3.

In the next section we formalise these ideas in a general framework, called credal

choice logic (CCL), which provides an extension of Poole’s independent choice logic

in which the independence condition is relaxed.

4 Credal Choice Logic

Syntax. From a syntactical point of view, the idea pursued in this paper is to consider

elements of the choice space not as independent alternatives but as independent families,

each including possibly correlated alternatives. This is formally stated in the following

definition.

Definition 1. A CCL theory T is a triple 〈P, C, µ〉 where:

– P is an acyclic logic program.

– C = {C1, . . . ,Ck} is a family of choice spaces (i.e., a set of sets of non-empty

sets of ground atoms). Alternatives and atomic choices are intended as in ICL. In

particular we assume that:

1. for each choice space C ∈ C, no atomic choice in
⋃

C should unify with the

head of any clause in P;

2. for each pair C,C′ ∈ C with C 6= C
′, the sets of atomic choices

⋃

C and
⋃

C
′ are disjoint.

– µ specifies a probability mass function over each alternative of each choice space,

i.e., µ :
⋃⋃

C → [0, 1] with
∑

a∈C µ(a) = 1, for every C ∈ C, and every C ∈ C.

Contrary to ICL, in a CCL theory the alternatives in a given choice space are not as-

sumed to be independent. Consequently there could be a choice space C with alterna-

tives C1, C2 ∈ C such that C1 6= C2 but C1 ∩ C1 6= ∅. On the other hand, any ICL

theory can be formalised as a CCL theory 〈P, C, µ〉 whose choice spaces C ∈ C are

singletons.



A Credal Extension of Independent Choice Logic 7

Example 5. Dropping the independence assumption about the relation between Andrea

going by car and raining in Milan in the example in the previous section transforms

the corresponding ICL theory in a CCL theory Tfriends := 〈P, {C1,C2}, µ〉, where

C1 = {C1, C2}, C2 = {C3}, while P and µ are defined as in the original example.

The fact fact that alternatives C1 and C2 belong to the same choice space means that

the choice among elements of C1 (namely between c and nc) is not assumed to be

independent from the choice among elements of C2 (namely between r and nr). On the

other hand the fact that the alternative C3 does not belong to the same choice space as

C1 and C2 means that the choice between w and nw is independent of the two previous

choices.

Semantics. As in ICL, the CCL semantics is defined in terms of possible words. A total

choice for a family C of choice spaces is a choice function ci on
⋃

C such that, for C

and C′ belonging to the same choice space C, the following coherence condition is

satisfied:

ci(C) = ci(C
′) , (3)

whenever ci(C) ∈ C ∩ C′. Hence a total choice selects coherently (in the sense of

Equation (3)) exactly one atomic choice from each alternative of every choice space of

C.

Now, consider the program P(c) := P ∪ {a ← | ϕ ∈ image(c)}. From the dis-

jointness conditions, P(c) is necessarily acyclic and therefore by Proposition 1 it has a

unique stable model I(c). As for ICL, for each total choice c we define a corresponding

possible world ωc and the associated notion of being true in it.

In the case of ICL, the probability for a possible world is given as in Equation (2)

by the product of the probabilities of the atomic choices true in it and one minus the

probabilities of the atomic choices false in it. The distribution semantics we defined for

CCL acts similarly but on sets of probabilities.

To illustrate the idea, notice that a total choice c restricted to a choice space Ci

determines a partial selection ci. Such partial selection can be identified with all total

choices extending it, and thus with the collection Eci
of possible world in which all

elements in the image of ci are true. Such collection represents the possible worlds an

agent cannot tell apart if she is given only the partial information provided by ci. Let

Ωi be the set of all collections associated with Ci. Assume µi is a probability mass

function over Ωi, and define µi(a) :=
∑

ci:a∈image(ci)
µi(Eci

), for a ∈
⋃

Ci. We say

that µi agrees with µ on Ci if µi(a) = µ(a), for every a ∈
⋃

Ci. Hence, callMi the

set of all probability distributions over Ωi agreeing with µ on Ci.

Each possible world ωc ∈ Ω can be identified with the unique sequence (Eci
: i ∈

{1, . . . , k}) ∈ ×i∈{1,...,k}Ωi such that {ωc} =
⋂

i∈{1,...,k} Eci
. For µi ∈ Mi with

i ∈ {1, . . . , k}, let µ′ :=
∏

i∈{1,...,k} µi be the mass function on Ω defined by:

µ′(ωc) =
∏

i∈{1,...,k}

µi(Eci
) . (4)



8 Alessandro Antonucci and Alessandro Facchini

We can therefore associate with a CCL theory T a joint credal setMT obtained as the

following set of factorising mass functions:







∏

ii∈{1,...,k}

µi | µi ∈ Mi, i ∈ {1, . . . , k}







. (5)

It is immediate to verify the following result.

Proposition 2. Let T be a CCL theory.MT is the largest closed convex set of probabil-

ity mass functions µ′ on Ω that agree with µ, that is µ′(a) = µ(a) for every a ∈
⋃⋃

C.

In the imprecise-probability jargon, the condition in Equation 5 is called strong inde-

pendence between the variables associated to the different choice spaces [3]. Accord-

ingly, we call the credal set MT strong extension of the marginals specified by µ. In

particular, we have that for µi ∈Mi there is µ′ ∈MT such that:

µi(Eci
) =

∑

ω∈Eci

µ′(ω) = µ′(image(ci)) . (6)

Given a CCL theory T , a question is therefore whether or not a probability mass func-

tion over the possible worlds consistent with the marginals exists. By Equation (5) it is

enough to answer such question when C contains a single choice space. But this can be

shown by induction on the number of alternatives. Hence, the following holds.

Proposition 3. The credal setMT of a CCL theory T is non-empty.

Example 6. Consider the CCL theory Tfriends := 〈P, {C1,C2}, µ〉 in Example 5. There

are four partial choices c
j
1 with respect to C1 and thus four collections E

c
j
1

of possible

worlds and, similarly, two partial choices c
j
2 with respect to C2 and two collections E

c
j
1

of possible worlds (see Table 3). We have thatM1 is the collection of all probability

mass functions µ1 : {E
c
1

1
, . . . , E

c
4

1
} → [0, 1] such that µ(r) = µ1(Ec

1

1
) + µ1(Ec

2

1
),

µ(nr) = µ1(Ec
3

1
) + µ1(Ec

4

1
), µ(c) = µ1(Ec

1

1
) + µ1(Ec

3

1
) and µ(nc) = µ1(Ec

2

1
) +

µ1(Ec
4

1
). On the other hand,M2 is given by taking µ2 : {E

c
1

2
, E

c
2

2
} → [0, 1] defined

simply as µ2(Ec
1

2
) = µ(w) and µ2(Ec

2

2
) = µ(nw). HenceMTfriends

= {µ′ = µ1 · µ2 |

µ1 ∈ M1, µ2 ∈ M2}, whereM1 is the convex hull of µ
(1)
1 = [0.0; 0.1; 0.4; 0.5] and

µ
(2)
1 = [0.1; 0.0; 0.5; 0.4], whileM2 has a single element µ2 = [0.2; 0.8].

(i, j) (1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2)

E
c
j
i

{ω1, ω2} {ω3, ω4} {ω5, ω6} {ω7, ω8} {ω1, ω3, ω5, ω7} {ω2, ω4, ω6, ω8}

image(cji ) {r, c} {r, nc} {nr, c} {nr, nc} {w} {nw}
Table 3. Classes (of possible worlds) forM1 andM2.



A Credal Extension of Independent Choice Logic 9

5 Inference

In the previous section, by relaxing the independence assumptions, we introduced CCL

as a generalisation of ICL. Here we discuss how to compute inferences in CCL.

Given a CCL theory T , the CCL semantics leads to the specification of a credal

set MT over Ω called the strong extension of T . Given a query Q (see definition in

Section 2) for the program P in T , inference is intended as the computation of the

lower µ(Q) and upper µ(Q) bounds of the success probability of the query with respect

to the strong extension, i.e.,

µ(Q) := min
µ(Ω)∈MT

∑

ω|=Q

µ(ω) , (7)

and similarly, with the maximum replacing the minimum for the upper success proba-

bility µ(Q). AsMT is non-empty (Proposition 3), Equation (7) always returns proper

inferences. Moreover, being induced by a finite number of linear constraints over the

joint probabilities (non-negativity, normalisation, and consistency with the marginal

probabilistic facts), the convex setMT has only a finite number of extreme points and

Equation (7) can be regarded as a linear programming task, whose solution corresponds

to an extreme point of MT . E.g., the interval [0.2, 0.5] obtained in Section 3 for the

query h under a complete relaxation of the independence assumptions can be regarded

as a CCL inference over a strong extension corresponding to the convex hull of the mass

functions {µ(i)}8i=1 in Table 2. Such a brute-force approach cannot be used in general

as the number of extreme points might be exponentially large with respect to the input

size. In the rest of this section we show that even if, as expected, inference in CCL is

NP-hard, these inferences can be reduced to a classical task for which dedicated solver

and algorithms have been developed.

To do that, let us first denote as CCLα the decision task associated to an inference,

i.e., given a α ∈ [0, 1], deciding whether or not α ∈ [µ(Q), µ(Q)]. In case the the-

ory contains a single choice space, CCLα can be reduced to probabilistic satisfiability

(PSAT). PSAT is a generalisation of the classical satisfiability (SAT) decision problem,

in which each element of a finite set of Boolean formulas is paired with a probabilistic

assessment [25]. The task is to decide whether or not the assessments are consistent, i.e.,

to determine whether or not a joint mass function over the variable assigning the given

probability to each formula exists. A PSAT instance is thus a set {P (ϕi) = αi | i < n}
where each ϕi is a Boolean formula and αi is the associated probability. As the problem

generalises SAT for propositional calculus it is NP-hard. The NP-completeness of the

task has been proved in [17] and, unlike SAT, PSAT remains NP-complete even if each

clause does not contains more than two literals.

We first describe how PSAT can be used to solve CCLα. Let 〈P, C = {C}, µ〉 be

a CCL theory with a single choice space. First, we convert P to an equivalent Boolean

formula ϕP (see, e.g., [19] for some conversions), and encode the choice space C as a

conjunction of XOR:

ϕC :=
∧

C∈C

⊕

a∈C

a . (8)

The class of models of ϕC ∧ ϕP corresponds to the stable models of the original CCL

theory. The associated PSAT instance is therefore the set Σα := {P (ϕC ∧ ϕP) =



10 Alessandro Antonucci and Alessandro Facchini

1} ∪ {P (a) = µ(a) | a ∈
⋃

C} ∪ {P (
∧

Q) = α}. Clearly α ∈ [µ(Q), µ(Q)] if and

only if Σα is satisfiable. With a small abuse of notation, we denote as SAT(CCLα) a

Boolean variable true if and only if Σα is satisfiable.

The computation of [µ(Q), µ(Q)] can be therefore achieved by iterating the above

reduction for different values of α according to a bracketing scheme that identifies both

the bounds (Figure 1). The procedure is basically a bisection method that recognises

UNSAT values of α as outer approximations (red points in Figure 1) and SAT values as

inner approximations (blue points in Figure 1). To solve PSAT instances, solvers such

of those developed by [12] and [6] can be used. To achieve a precision ǫ in the estimates,

the number of calls of these solvers is O(log ǫ−1).

0 1µ(Q) µ(Q)µI(Q)

UNSATUNSAT SAT SATSAT

Fig. 1. Inner and outer approximations of CCL inferences.

A key point for the bracketing algorithm is the computation of an inner (i.e., SAT)

value µI(Q) (e.g., black point in Figure 1). We achieve this by translating it into the in-

ference task of computing in ProbLog the marginal probability of the query given some

specific evidence. More precisely, we first translate T into ProbLog by distinguishing

different occurrences of the same atomic choices and adding, for each duplicated atomic

choice, a clause of the form f ← a, a′, where f is some fixed new symbol. Reading f

as denoting the false, the newly introduced clauses mimics the coherence conditions on

total choices defined on CCL theories. Then, we modify the probabilistic assignment

µ to each atomic choice a in such a way that the marginal probability of a given the

evidence f = f (i.e. f is false) coincide with µ(a). Hence, the value µI(Q) corre-

sponds to the ProbLog computation of the marginal probability for the query Q given

the evidence f = f. Such task can be reduced to weighted model counting [11].

The above procedure should be adopted when coping with CCL theories having a

single choice space as in the case of object ranking (see Section 6). For the general case,

we suggest the following (outer) approximation scheme:

µ(Q) ≥
∑

ωc|=Q

µ(ωc) =
∑

ωc|=Q

k
∏

i=1

µ(image(ci)) , (9)

where the inequality follows from Equation (7) by simply swapping the minimum and

the sum, while the equality with the term on the right-hand side follows from the fac-

torisation in Equation (4) and then by applying Equation (6).

Example 7. Consider the CCL theory Tfriends from Example 5. We calculate the lower

success probability of query h. As the theory contains multiple choice spaces, we should



A Credal Extension of Independent Choice Logic 11

use Equation (9). However notice that ωi |= h exactly when i = 8 (see Section 3) and

therefore:

µ({h}) = µ(ω8) = µ
1
({nr, nc}) · µ

2
({nw}) ,

which gives the numerical value 0.32, as expected from Section 3. Analogously we get

0.40 for the corresponding upper success probability.

6 Empirical Analysis

In this section we report the results of a very first empirical analysis of the approach to

CCL inference described in the previous section. Unlike most of the statistical models

based on credal sets [3], CCL has no parameters directly affecting the imprecision level

of the inferences (i.e., the difference between the upper and the lower probability of

a query). A first important question is therefore whether or not, our relaxation of the

standard independence assumptions in PLP, allows to obtain non-vacuous inferences

from a query. Another point is whether or not available PSAT algorithms are able to

solve instances induced by CCL theories.2

To achieve that we consider object ranking, that is the task of deriving a complete

ranking over a set of n objects from a data set D of complete rankings (if features are

also considered, the term preference/label learning is used instead) [16]. We assume

rankings not directly available: only the n2 marginal counts reporting how many times

a certain object gets a certain rank are available. Note that, in general, complete infor-

mation about the rankings cannot be recovered from these counts (Figure 2).

a ≻ b ≻ c × 3

a ≻ c ≻ b × 5

b ≻ a ≻ c × 2

b ≻ c ≻ a × 4

c ≻ a ≻ b × 3

c ≻ b ≻ a × 1

a b c

first

second

third

5 4 9

8 6 4

5 8 5

Fig. 2. From complete rankings to marginal counts.

Consider for instance a horse race. Call rj the unary predicate denoting the property

“ending the race in j-th position”, and hi the constant associated to the i-th horse with

i, j = 1, . . . , n. The ground atom rj(hi) means “horse i ended the race in j-th position”.

Under our assumptions, we can learn from the data the (marginal) probabilities αi,j :=
µ(rj(hi)). Object ranking can be based on a joint mass function over these n2 ground

toms. This function should reproduce the marginal probabilities being also consistent

with the obvious logical constraints (“one and only one horse ends the race in j-th

2 Here we use the solver [12], freely available at http://psat.sourceforge.net.

http://psat.sourceforge.net


12 Alessandro Antonucci and Alessandro Facchini

position”, and “one and only one position is reached by the i-th horse at the end of the

race”). These constraints are encoded in the following formula:

ϕranking :=

n
∧

j=1

n
⊕

i=1

rj(hi) ∧
n
∧

i=1

n
⊕

j=1

rj(hi) , (10)

where ⊕ is the exclusive disjunction (XOR). Algebraically, the task corresponds there-

fore to the specification of a joint mass function over n2 Boolean variables, i.e., 2n
2

probabilities. Only n! probabilities are non-zero as soon as we impose the constraints

in Equation (10), while the n2 marginal probability induce an equal number of (linear)

constraints. Thus, we might have non-unique specifications even with four objects only.

Consistently with what above, although complete rankings over n objects are avail-

able for training, we only learn the n2 marginal probabilities. This is done by smoothing

the frequencies with a Laplace prior of equivalent size two. The corresponding CCL the-

ory is defined as the program-free CCL theory Tranking := 〈∅, C, µ〉 with a single choice

space, i.e., C = {{C1, . . . , Cn} ∪ {C′
1, . . . , C

′
n}} with Cℓ = {r1(hℓ), . . . , rn(hℓ)} and

C′
ℓ = {rℓ(h1), . . . , rℓ(hn)}, and by stating µ(rj(hi)) := αi,j for each i, j = 1, . . . , n.

This eventually induces PSAT instances with the same probabilistic facts and logical

constraints obtained by a CNF (conjunctive normal form) conversion of Equation (10).3

As a first benchmark, we use four classical UCI datasets (Vehicle, Stock, Glasses,

and Bodyfat) with n = 4, 5, 6, 7. We evaluate pairwise preferences between pairs of

objects. We write i′ ≻ i′′ to denote the fact that object i′ has a higher ranking than

object i′′. To do that, we extend the theory Tranking by adding to the (initially empty)

program P, the following clauses:

{

q ← rj′ (hi′), rj′′ (hi′′) |
j′,j′′=1,...,n
s.t. j′>j′′

}

, (11)

where q is a new symbol. Hence, the query corresponding to the property i′ ≻ i′′ will

be given by Qi′≻i′′ := {q}. For this query we compute both µ(Qi′≻i′′) and µ(Qi′≻i′′ )
and, on the basis of these values, we decide whether i′ ≻ i′′ or i′′ ≻ i′. Note that when

coping with imprecise, interval-valued, inferences, a condition of indecision between

the two options can be also observed.

This is the case if [µ(Qi′≻i′′), µ(Qi′≻i′′)] overlaps the decision threshold .5, other-

wise a clear preference is returned. This decision (denoted as CCL) is compared against

the one based on the original data with the complete rankings regarded here as a ground

truth and the one based on the marginal probabilities treated as independent (denoted

as ICL). The ICL accuracy on the queries is evaluated separately on the pairs on which

CCL is determinate and the ones on which CCL is indeterminate (i.e., indecision is

returned). These results are in Figure 3. The separation between these two accuracies

is clear: CCL becomes undecided on the tasks on which a less conservative approach

would be less accurate, thus providing a more robust approach to the inferences.

3 A XOR rewrites as a disjunction together with negations of pairwise conjunctions.



A Credal Extension of Independent Choice Logic 13

Vehicle Stock Glasses Bodyfat

20

40

60

80

100

A
cc

u
ra

cy
[%

]
Fig. 3. ICL accuracy for preference queries on instances in which CCL is determinate (blue) and

indeterminate (red).

7 Conclusions

In the last years, several works in the probabilistic logic tradition have proposed for-

malisms to explicitly deal with independence, see e.g. [1,5,18,23]. Our approach differs

in the sense that, rather than attempting to combine probabilistic logics and proba-

bilistic networks, is closer to logic programming. Indeed, we have introduced CCL, a

conservative extension of Poole’s ICL in which both independent and non independent

choices can be modelled. In the proposed setting, a theory specifies the (credal) set of all

probability mass functions over least models compatible with the marginals on atomic

choices. In guise of example, we applied CCL to object ranking and have shown how to

infer the lower and upper probabilities of a query. In future work, on top of presenting

more complex applications and deeper experiments of the proposed formalism, we plan

to compare our work with related approaches such as for instance the one discussed by

[13] in the context of probabilistic databases.

References

1. Andersen, K.A., Hooker, J.N.: Bayesian logic. Decision Support Systems 11(2), 191–210

(1994)

2. Apt, K.R., Bezem, M.: Acyclic programs. New Generation Computing 9(3), 335–363 (1991)

3. Augustin, T., Coolen, F., de Cooman, G., Troffaes, M.: Introduction to imprecise probabili-

ties. John Wiley & Sons (2014)

4. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker,

M.A., Guo, J., Li, P., Riddell, A.: Stan: a probabilistic programming language. Journal of

Statistical Software 20, 1–37 (2016)

5. Cozman, F., de Campos, C., da Rocha, J.C.: Probabilistic logic with independence. Interna-

tional Journal of Approximate Reasoning 49(1), 3–17 (2008)

6. Cozman, F., di Ianni, L.: Probabilistic satisfiability and coherence checking through integer

programming. International Journal of Approximate Reasoning 58, 57–70 (2015)

7. Cozman, F., Mauá, D.: On the semantics and complexity of probabilistic logic programs.

Journal of Artificial Intelligence Research 60, 221–262 (2017)

8. De Raedt, L.: Applications of probabilistic logic programming. In: International Conference

on Inductive Logic Programming (2015)



14 Alessandro Antonucci and Alessandro Facchini

9. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Machine Learning

100(1), 5–47 (2015)

10. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: a probabilistic Prolog and its application

in link discovery. In: International Joint Conference on Artificial Intelligence. pp. 2462–2467

(2007)

11. Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I.,

Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic programs using

weighted Boolean formulas. Theory and Practice of Logic Programming 15(3), 358–401

(2015)

12. Finger, M., De Bona, G.: Probabilistic satisfiability: logic-based algorithms and phase tran-

sition. In: International Joint Conference on Artificial Intelligence. pp. 528–533 (2011)

13. Flesca, S., Furfaro, F., Parisi, F.: Consistency checking and querying in probabilistic

databases under integrity constraints. Journal of Computer and System Sciences 80(7), 1448–

1489 (2014)

14. Fuhr, N.: Probabilistic Datalog: a logic for powerful retrieval methods. In: International ACM

SIGIR Conference on Research and Development in Information Retrieval. pp. 282–290.

ACM (1995)

15. Fuhr, N.: Probabilistic Datalog: implementing logical information retrieval for advanced ap-

plications. Journal of the Association for Information Science and Technology 51(2), 95–110

(2000)

16. Fürnkranz, J., Hüllermeier, E.: Preference learning: an introduction. In: Preference learning,

pp. 1–17. Springer (2010)

17. Georgakopoulos, G., Kavvadias, D., Papadimitriou, C.: Probabilistic satisfiability. Journal of

Complexity 4(1), 1–11 (1988)

18. Haenni, R., Romeijn, J.W., Wheeler, G., Williamson, J.: Probabilistic logics and probabilistic

networks, vol. 350. Springer Science & Business Media (2010)

19. Janhunen, T.: Representing normal programs with clauses. In: European Conference on Ar-

tificial Intelligence. pp. 358–362. IOS Press (2004)

20. Levi, I.: The enterprise of knowledge: an essay on knowledge, credal probability, and chance.

MIT press (1983)

21. Lukasiewicz, T.: Probabilistic logic programming. In: European Conference on Artificial

Intelligence. pp. 388–392 (1998)

22. Lukasiewicz, T.: Probabilistic description logic programs. International Journal of Approxi-

mate Reasoning 45(2), 288–307 (2007)

23. Michels, S., Hommersom, A., Lucas, P.J., Velikova, M.: A new probabilistic constraint logic

programming language based on a generalised distribution semantics. Artificial Intelligence

228, 1–44 (2015)

24. Ng, R., Subrahmanian, V.S.: Probabilistic logic programming. Information and Computation

101(2), 150–201 (1992)

25. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)

26. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence 64(1),

81–129 (1993)

27. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty.

Artificial Intelligence 94(1), 7–56 (1997)

28. Sato, T.: A statistical learning method for logic programs with distribution semantics. In:

International Conference on Logic Programming. pp. 715–729 (1995)

29. Vennekens, J., Verbaeten, S.: Logic Programs with Annotated Disjunctions. Technical Report

CW 368, K.U.Leuven (2003)

30. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions.

In: International Conference on Logic Programming. pp. 431–445. Springer (2004)


	A Credal Extension of Independent Choice Logic

