
Faster and Smaller Two-Level Index for
Network-based Trajectories ?

Rodrigo Rivera, Andrea Rodŕıguez, and Diego Seco

Department of Computer Science, University of Concepción, Chile
{rodrivera,andrea,dseco}@udec.cl

Abstract. Two-level indexes have been widely used to handle trajec-
tories of moving objects that are constrained to a network. The top-
level of these indexes handles the spatial dimension, whereas the bottom
level handles the temporal dimension. The latter turns out to be an in-
stance of the interval-intersection problem, but it has been tackled by
non-specialized spatial indexes. In this work, we propose the use of a
compact data structure on the bottom level of these indexes. Our exper-
imental evaluation shows that our approach is both faster and smaller
than existing solutions.

Keywords: Space-efficient data structures · Moving-objects · Indexing.

1 Introduction

Spatio-temporal information has gained popularity in decision making systems,
such as optimization of transportation systems, urban planning, and so on. The
proliferation of different types of sensors to capture or generate this kind of data
has made these applications possible but, at the same time, it has also made
challenging the storage and processing of spatio-temporal data. The work in this
paper focuses on a subcategory of spatio-temporal data, that is, trajectory of
moving objects, which can be be reconstructed by the GPS devices of smart-
phones or, at a different granularity, by smart transportation cards.

Trajectories can be classified as free-trajectories, in which movement is not
constrained, and network-based trajectories, in which movement is constrained
to a network and cannot exist outside such network. Hurricanes and animal mi-
grations are examples of the former, whereas public transportation is an example
of the latter. Useful queries that can be answered by handling trajectories are:
count the number of vessels inside a region during a time period (e.g. fishing
closed season) or find the shortest path between two stops of a transportation
system during a time period.

? Funded in part by European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sk lodowska-Curie grant agreement 690941, by CONICYT-
PFCHA/MaǵısterNacional/2016 - 22161080 (R.R.), and Millennium Institute for
Foundational Research on Data and Fondecyt-Conicyt grant number 1170497.

ar
X

iv
:1

90
1.

01
17

2v
1

 [
cs

.D
S]

 4
 J

an
 2

01
9

2 R. Rivera et al.

Several spatio-temporal indexes have been proposed to handle both free and
network-based trajectories. However, classical solutions to deal with moving-
object data are inefficient when facing the data volume collected through new
sensor technology and the increasing interest for data analysis. On the other
hand, space-efficient data structures have been proved to be successful for han-
dling large volumes of data in many different domains, such as the Web, biological
sequences, documents and code repositories, to name some examples.

In this work, we focus on two-level indexes for network-based trajectories and
propose a new solution that uses compact data structures on the bottom level.
This approach turns out to be smaller and faster than existing solutions.

2 Background and Related Work

A data structure for trajectories must provide access methods that allow the pro-
cessing of spatio-temporal queries. These queries can be classified into coordinate-
and trajectory-based queries [25]. Coordinate-based queries include time-slice
queries that determine the position of objects at a given time instant, time-
interval queries that extend time-slice queries to a time range, and queries
about nearby neighbors. As for trajectory-based queries, they include topologi-
cal queries, which involve information regarding the movement of an object, and
queries related to navigation, which involve information derived from the move-
ment, such as speed or direction. There also exist combinations such as “Where
was object X at a given time instant”.

Various data structures have been proposed to efficiently support queries on
trajectories. These structures can be broadly classified into two categories: i)
Data structures to support free movements on a space, such as 3D R-tree (a
three-dimensional extension of the R-tree [17]), TB-tree [25] (which preserves
the trajectories while allowing typical range queries on an R-tree) and MV3R-
tree [31] (which uses a multi-version R-tree, called MVR-tree, along with an
auxiliary 3D R-tree). ii) Data structures to support movements on networks, such
as FNR-tree [14] (which uses a combination of a 2D R-tree with a forest of 1D
R-trees), MON-tree [1] (using 2 levels of 2D R-trees) and PARINET [27] (based
on graph partitioning and the use of B+-tree). Among the previous structures,
FNR-tree and MON-tree have in common the separation of spatial and temporal
dimensions, using a spatial structure (two-dimensional) and a forest of temporal
structures (one-dimensional) to tackle each of these sub-problems separately.

Like FNR-tree and MON-tree, we focus on these two-level indexes. To solve
the spatial problem, that is, the representation of the network in space (two-
dimensional plane), aforementioned structures use a 2D R-tree, storing the seg-
ments of the network as lines. With the spatial problem solved, time has to be
associated with segments in the network. More precisely, it is necessary to look
for all the time intervals (times in which some objects pass through a segment)
that intersect with a given query interval. This problem is known in the litera-
ture as interval intersection, an extension of the interval stabbing problem [29].
Classical structures to solve this problem are Interval trees and Priority trees [5].

Faster and Smaller Two-Level Index for Network-based Trajectories 3

As for the subproblem in the temporal dimension, FNR-tree makes use of
a one-dimensional R-tree for each segment. These 1D R-trees index the objects
whose trajectories pass through the segments of the network, storing the instant
they enter and leave the segment in the form of a time interval (tentry, texit).
Since only these intervals are stored, the structure assumes that objects do not
stop or change speed or direction in the middle of a segment, they can only do so
at nodes. MON-tree eliminates this restriction by replacing the one-dimensional
R-trees with two-dimensional R-trees, where they store the relative movement
within the segments as rectangles in the 2D R-tree of the form (p1, p2, t1, t2),
with (p1, p2) a range of relative positions and (t1, t2) a temporal interval.

While some of aforementioned structures support queries efficiently on large
datasets, they are incapable of handling the increasing data volume of current
applications. This has forced the use of compression techniques for data storage
and transmission. Some techniques are to reduce the number of points in a
curve [22] or to use features at each point, such as speed and orientation [26].
Both techniques work in free spaces and, when the movement is restricted to
networks, it is even possible to get a better compression, like the ones shown
in [18,19,20,28].

Previous compression techniques improve storage requirements and trans-
mission time of large datasets. However, the compression can be directly ex-
ploited by data structures that can maintain a compact representation of the
data while allowing for indexed search capabilities. These structures have been
called self-indexes and have been successfully implemented in other domains,
such as information retrieval [23].

Recently, compact data structures have been also used for the representation
of trajectories. GraCT [9], for free paths, uses a k2-tree [10] to store the abso-
lute position of the objects in regular time intervals (snapshots) plus compressed
logs for the representation of the movements between snapshots. ContaCT [8] im-
proves GraCT with more efficient logs. Both structures answer spatio-temporal
queries where space and time are the main filters, such as, “finding trajectories
that went through a specific region at a given time instant”. On the other hand,
CTR [7] supports trajectories restricted to networks by combining compressed
suffixes arrays (CSA), to represent the nodes on the network an object passes
through, and a balanced Wavelet matrix for the temporal component of the
movement. In CTR, trajectories (or trips) are defined as sequences of labels,
which represent the nodes of the network. Hence, it solves other types of queries
in which the space is represented with such labels, such as “find the number
of trajectories that started at X and ended at Y ”. This is a fundamental dif-
ference with our proposal, in which the spatial dimension are coordinates in
a two-dimensional space, and not labels. This is also the main difference with
CiNCT [20], which boosts CTR in terms of memory storage and query time.

Another difference with previous solutions is that our approach uncouples
the network from the trajectories. This model known as Network-Matched has
been successfully used [12,21], but without using compact data structures in its
implementation. Our approach has the advantage that mapping trajectories to

4 R. Rivera et al.

a network facilitates the finding of similar trajectories and, in consequence, it
allows a better use of space.

3 Data Structures for Network-based Trajectories

Similarly to the FNR-tree and MON-tree, we propose an index with two levels:
spatial (top level) and temporal (bottom level). In a preliminary experimental
evaluation, we observed that the spatial level requires negligible space compared
with the temporal level. For example, for the Oldenburg network (see Section 4),
in the baseline structure, the temporal level uses about 89% of the total memory
with 1,000 objects circulating and about 94% with 2,000 objects. The more data
are stored, the more negligible the spatial level becomes (due to the almost-static
nature of the transportation network in comparison with the moving objects).
Hence, we focus on optimizing the temporal level and process the spatial level
with a two-dimensional R-tree, as the FNR-tree and MON-tree do. Recall that
the R-tree is a balanced tree in which each leaf stores an entry of the form (id,
MBB), where id is a reference to the data (in this case to a temporal index)
and MBB is the Minimum Bounding Box that covers the spatial object (a line
segment, in this domain). The R-tree does not provide worst-case guarantees
as it may be forced to examine the entire tree in O(n) time, even when the
output is empty. However, it performs well in practice and is ubiquitous in spatial
databases.

Each leaf of the R-tree contains a reference to a temporal index. These in-
dexes solve the Interval Intersection problem. Before presenting alternatives to
solve this problem, we give an overview of a query algorithm for spatio-temporal
range queries, which are the most general coordinate-bases queries. First, a spa-
tial query, a 2D window, is solved on the 2D R-tree, which returns a set of leaves
whose segment may intersect the window. As in most spatial indexes, a refine-
ment step is then executed to eliminate false positives, i.e. network segments
whose MBBs intersect the window, but they do not actually intersect the win-
dow. After this refinement, the interval intersection query is executed in each
temporal index referenced by the remaining leaves of the R-tree. Results from
all these temporal indexes are then combined using an implementation of a set.

3.1 Temporal Level: Data structures for the Interval Intersection
Problem

Unlike the FNR-tree and MON-tree, which use variants of an R-tree, we explore
the use of specialized data structures for the interval-intersection problem.

Interval-tree [5]. This is a binary tree that is constructed recursively in the
following way: i) The median xmed of all the interval endpoints is computed. ii)
Intervals are classified in three sets, Imed, Ileft and Iright, which contain intervals
stabbed by xmed, intervals to the left of xmed and intervals to the right of xmed,
respectively. iii) Imed is stored in a structure composed of two arrays sorted by

Faster and Smaller Two-Level Index for Network-based Trajectories 5

left and right endpoints, and associated with the root, whereas Ileft and Iright
are recursively processed and assigned as left and right child, respectively.

A search for the intervals that intersect with the query interval (lq, rq) is
solved recursively starting from the root. The intervals within the visiting node
that intersect the query interval are returned and the search is continued in the
left child if lq is less than xmed and/or in the right child if rq is greater than
xmed. This data structure requires linear space and O(log n + k) query time,
where k is the number of reported results.

Schmidt. The structure presented in [29] to solve the Interval Stabbing problem
can be extended to solve also the Interval Intersection problem [11]. It defines
the father of an interval as the rightmost interval among those that cover it
completely. This relation forms a tree where siblings are ordered from left to
right, and the root of the tree is a special node that acts as the father of all the
intervals that are not covered by any other. In addition, for each possible end-
point of an interval, the structure stores an array called start, with a pointer to
the node representing the rightmost-starting interval that intersects such point,
and an array start2, storing a pointer to the node representing the rightmost
interval starting up to such point (which may not be stabbed by it).

To solve an interval intersection query q, the algorithm first reports the right-
most interval that intersects q, which is max(start[lq], start2[rq]), if it exists.
Then, the algorithm recursively reports the siblings to the left of the node while
its right endpoint is greater than or equal to lq, also searching among the right
children of the reported nodes. This structure requires linear space and optimal
O(1+k) query time. Note, however, that this solution works only for small integer
ranges. In order to work with intervals whose endpoints are floats, these end-
points are stored in sorted arrays and two binary searches are used to translate
the query to rank space [11], which results in a total complexity of O(log n+ k).

Compact data structure based on Independent Interval Sets (IIS). A
set of intervals I = {i1, i2, ..., in} is called an Independent Interval Set if no
interval ij ∈ I is contained in any other interval ik ∈ I.

Report the k intervals of an IIS that intersect a query interval Q = [lq, rq]
can be easily computed if we have the intervals in order. Note that, by definition
of IIS, the order of the left endpoints of the intervals is the same as that of
the right endpoints. If the first and the last interval intersected by the query
are located, it is enough to iterate between them to return all the intersected
intervals (see Figure 1).

In order to locate these two intervals, we could store the left and right coordi-
nates of the intervals in two sorted arrays and use binary search to locate them,
which is similar to what we did in previous solution. However, for this domain,
we propose a simple solution that facilitates the use of compact data structures.
Recall that the endpoints of our intervals are timestamps represented as float
numbers. We multiply these timestamps by a scale factor to convert them to
integers. For example, if we work with timestamps with up to 6 decimals it is

6 R. Rivera et al.

Fig. 1: An Independent Interval Set (IIS) and its representation with two bitvec-
tors. In red, the last interval stabbed in start and the first one in end.

enough to multiply each one of them by 106 to discretize the space. With this
procedure, we obtain integer endpoints in an universe U and, the larger the scale
factor, the larger the universe.

After this discretization, we use two bitvectors, one for the left endpoints,
start, and another for the right endpoints, end, of each interval in the set (see
Figure 1). A 1-bit in these bitvectors indicate that an interval starts (or ends,
respectively), at such position. Then, for a query Q = [lq, rq] also discretized to
this universe, two rank operations on these bitmaps are used to locate the first
and last intervals intersected by the query: rank1(end, lq) and rank1(start, rq),
respectively. As we mentioned above, the larger the scale factor, the larger the
size of the universe u, which is the number of bits in these bitmaps. However, the
number of set bits in them is n, which is the number of intervals (independently
of the scale factor). Hence, we use the Elias-Fano representation [24] for this
bitmaps, which takes 2n + n log u

n bits of space. Note that, for a constant c and
u = O(nc), it uses linear space as previous structures. The query time of rank
operations on these bitmaps is O(log u

n), thus, this structure can report the k
intervals intersecting the query in O(log u

n + k) time.
Although this solution only works for IIS, a general set of intervals can be

decomposed into m independent sets in O(n logm) time, for example, with Fred-
man’s algorithm [13] to find the optimal number of shuffled upsequences in a
permutation (by considering the rightmost endpoints of the intervals as the per-
muted values). This leads to a solution that requires O(m log u

n + k) time to
report the k solutions. This does not provide worst case guarantees as m can be
as large as n, however, this adaptive analysis shows that this is an efficient solu-
tion for domains in which m is small. The empirical evaluation in next section
shows that this is precisely the case in our domain.

4 Experimental Results

All the implementations evaluated in this paper were coded in C++11. For
the baselines, we use some available implementations: R-tree [2], Interval-tree1

1 This implementation uses sequential search in each node, which is not optimal in
theory, but performs well in practice.

Faster and Smaller Two-Level Index for Network-based Trajectories 7

[15] and Schmidt [30]. We also make use of some succinct data structures from
the SDSL library [16]. The experiments were run in a computer with an Intel
Xeon E3-1220 v5 of 3.00 GHz CPU, 64GB of RAM, and implementations were
compiled with g++ 5.4.0 over Ubuntu 16.04 (64 bits).

We first evaluate the performance of all the implementations for interval
intersection on synthetic datasets, and then, the best candidates are evaluated
in the complete solution for network-based trajectories.

4.1 Evaluation of Interval Intersection Data Structures

We evaluated the performance in three scenarios with different types of intervals:
i) fixed size (Figure 2), ii) random size (Figure 3), and iii) intervals of trajectories
extracted from a trajectories dataset generated with Brinkhoff’s generator [6]
over San Francisco’s network (Figure 4). For each of these scenarios, we created a
dataset with 800,000 intervals and a queryset with 500 random queries. Reported
query time is the total time to solve all the queries.

2 4 6 8
0

5

10

Number of intervals (×105)

T
im

e
(
s
)

a) Query time

R-tree

Interval-tree

Schmidt

IIS

2 4 6 8

100

101

102

Number of intervals (×105)

M
e
m

o
r
y

u
s
a
g
e

(
M

B
)

b) Space (log scale)

2 4 6 8
0

1

2

3

4

Number of intervals (×105)

T
im

e
(
s
)

c) Construction time

Fig. 2: Fixed size intervals.

Figure 2 shows the performance of the structures using fixed size intervals.
The compact data structure shows the best performance among the four struc-
tures, with a considerable advantage in both query time and memory usage. In
this scenario, intervals do not fully cover each other (except for precision issues),
which produces a low number of independent sets in the IIS structure (only 6
for 800,000 intervals). This explains the outstanding performance of IIS.

Figure 3 shows the performance of the structures for random size intervals.
The compact data structure keeps the best results in query time and memory
usage (although in a tie with the Interval-tree) while the building time is dras-
tically increased (up to 900 times the building time of the Interval-tree). This is
explained by the high number of independent sets (3,273 for 800,000 intervals),
which is caused by the frequency with which intervals fully cover each other.

Figure 4 shows the performance of the structures using time intervals ex-
tracted from synthetic trajectories obtained with Brinkhoff’s generator. The
compact data structure shows a performance in between the two previous cases,

8 R. Rivera et al.

2 4 6 8
0

5

10

15

Number of intervals (×105)

T
im

e
(
s
)

a) Query time

R-tree

Interval-tree

Schmidt

IIS

2 4 6 8

100

101

102

Number of intervals (×105)

M
e
m

o
r
y

u
s
a
g
e

(
M

B
)

b) Space (log scale)

2 4 6 8
0

500

1,000

Number of intervals (×105)

T
im

e
(
s
)

c) Construction time

Fig. 3: Random size intervals.

2 4 6 8
0

2

4

6

8

Number of intervals (×105)

T
im

e
(
s
)

a) Query time

R-tree

Interval-tree

Schmidt

IIS

2 4 6 8

100

101

102

Number of intervals (×105)

M
e
m

o
r
y

u
s
a
g
e

(
M

B
)

b) Space (log scale)

2 4 6 8
0

5

10

Number of intervals (×105)

T
im

e
(
s
)

c) Construction time

Fig. 4: Intervals from trajectories.

but more similar to the first one. This shows the sensibility of the structure to
the number of independent sets. In this dataset, intervals of trajectories have
often similar length, producing a relatively low number of independent sets (29
for 800,000 intervals). Each temporal index is associated with a segment of the
network, and moving objects usually traverse a same segment at a similar speed.

We also evaluated the sensibility of the structures to the scale used to trans-
form original float-number times to integers. In this procedure, each time is
multiplied by a scale factor and then truncated. In our datasets, original times
use up to 8 digits to the right of the decimal point. Hence, a scale factor of 108

guarantees a lossless transformation, whereas lower scale factors may produce a
lossy transformation. In these experiments, we used the same 800,000 intervals
of trajectories of the previous evaluation and results are shown in Figure 5.

Query time shows an almost constant behavior, except for the increase suf-
fered by Schmidt, which is caused by the high number of duplicates when only
2 or less digits are used for the fractional part. In terms of space and construc-
tion time, the compact data structure is more sensible than the other structures,
which is caused by the scale process. As we explain in previous section, the larger
the scale factor, the larger the size of the bitmaps in this structure. Even so, this
structure obtains the best results in both query time and memory usage, also
giving the possibility to improve the performance in applications where the user
can afford losing some precision. Note, however, that in all the other experiments
we consider all the decimals, which is the worst case for our proposal.

Faster and Smaller Two-Level Index for Network-based Trajectories 9

0 2 4 6 8
0

2

4

6

8

Scale

T
im

e
(
s
)

a) Query time

R-tree

Interval-tree

Schmidt

IIS

0 2 4 6 8

10−2

100

102

Scale

M
e
m

o
r
y

u
s
a
g
e

(
M

B
)

b) Space (log scale)

0 2 4 6 8
0

2

4

6

Scale

T
im

e
(
s
)

c) Construction time

Fig. 5: Performance according the scale of the intervals. The last point of IIS in
the last graph was omitted, because it is about 40 times larger than the others.

4.2 Overall evaluation

From the experiments in previous section, we conclude that Schmidt’s structure
is always outperformed by the others, and thus it is not considered in the im-
plementation of data structures for trajectories. In the following experiments we
compare our proposal, based on compact data structures, with two baselines: the
original FNR-tree and an ad-hoc baseline in which 1D R-trees are replaced by
interval trees. Note that in these experiments we are comparing three two-level
indexes, all of them using a 2D R-tree on the top level.

The datasets of trajectories were created using Brinkhoff’s generator [6] over
the real road networks of Oldenburg and San Francisco. The former consists of
6,105 nodes and 7,305 edges, whereas the latter consists of 175,343 nodes and
223,343 edges. We created trajectories for 1,000, 2,000, 3,000, 4,000 and 5,000
objects during 100 units of time for both networks.

Memory usage. Figure 6 shows the space required by each of the structures.
The proposed space-efficient solution (labeled as IIS in the graphs) obtained the
best results in all the experiments. In addition, the larger the number of objects
moving over the network, the larger the advantage of this structure over the
baselines. For small number of moving objects, the total space used by the data
structures is dominated by the spatial level, however, as this number increases,
the temporal level dominates, and our proposal takes more advantage.

0 2 4
0

10

20

Num. of objects (×103)

M
e
m

o
r
y

u
s
a
g
e

(
M

B
)

Oldenburg

FNR-tree

baseline

IIS

0 2 4
0

50

100

150

Num. of objects (×103)

San Francisco

FNR-tree

baseline

IIS

Fig. 6: Total memory usage.

Structure Old. S.F.

FNR-tree 5 32
baseline 4 26
IIS 1.5 11

Table 1: Memory usage per
object (KB / object) [5,000
objects and 100 time units].

10 R. Rivera et al.

The approximated memory usage per object is shown in Table 1, which shows
that our approach requires about 70% less memory than the FNR-tree, and about
60% less memory than the baseline, when there are 5,000 objects moving over
the networks. The difference between the two datasets is explained by the size
of the network, the San Francisco network being much larger. First, part of the
space charged to each object is due to the spatial index. However, the size of
the network has also an impact on the distribution of objects per edge of the
network. As this distribution is very skewed, the larger the network, the larger
the number of nodes with few objects, which means an overhead.

Query Time. The time performance of the structures was evaluated for three
types of queries, which are the same used in the original evaluation of the FNR-
tree [14]: i) Range Queries with Equal Spatial and Temporal Extent, such as “find
all objects within a given area during a given time interval”; ii) Range Queries
with Larger Temporal Extent, which query for very large time intervals, including
intervals expanding the whole temporal dimension, such as “find all the objects
having ever passed through a given area”; and iii) Time Slice Queries, that only
consider a time instant, such as “find all the objects that were in a given area at
a given time instant”. For each of these scenarios, we created three query-sets
with 500 random queries for each network.

Figure 7 shows the results for the first type of queries. The first row shows
results for Oldenburg and the second row for San Francisco. For both datasets,
we show the results of random queries of different sizes, 1%, 10% and 20% in
each dimension. Similar frameworks will be used to evaluate the other two types
of queries. This is the same experimental setting used in [14].

In all the experiments our proposal outperforms both baselines. Just for small
queries, 1% of the dimensions, the FNR-tree shows competitive results with our
proposal. This is more evident in the largest network. The justification is the
relative importance of the spatial part of the query with respect to the temporal
part, which depends on the size of the network. Also important, our proposal
shows better scalability on the number of objects moving through the network.

Figure 8 shows the results for range queries with larger temporal extent. In
these experiments the temporal extent is always larger than the spatial extent,
expanding the whole temporal dimension in the second and third column.

Results in this scenario are similar to the previous one, but the advantage of
our proposal is even more obvious. Recall that our structure performs two rank
operations in each independent set and then it just iterates over the results,
which is very efficient. Finally, Figure 9 shows the results for time slice queries.

The analysis of these experiments is quite different from the previous ones,
as the FNR-tree usually outperforms all the other approaches. There are two
main reasons for this. First, large spatial queries lead querying many temporal
indexes (all of them for the experiments in the last column). Second, most of
these queries to temporal indexes produce empty results or very few results,
which is expensive in our proposal. Each of these queries needs to perform the
two rank operations in each independent set just to detect that there are no

Faster and Smaller Two-Level Index for Network-based Trajectories 11

0 2 4
0

50

100

150

200

Num. of objects (×103)

O
ld

e
n
b
u
r
g

T
im

e
(
µ
s
)

1%

FNR-tree

baseline

IIS

0 2 4
0

500

1,000

1,500

Num. of objects (×103)

10%

FNR-tree

baseline

IIS

0 2 4
0

2,000

4,000

6,000

8,000

Num. of objects (×103)

20%

FNR-tree

baseline

IIS

0 2 4
0

2,000

4,000

Num. of objects (×103)

S
a
n

F
r
a
n
c
is
c
o

T
im

e
(
µ
s
)

FNR-tree

baseline

IIS

0 2 4
0

0.5

1

·106

Num. of objects (×103)

FNR-tree

baseline

IIS

0 2 4
0

0.5

1

1.5

·107

Num. of objects (×103)

FNR-tree

baseline

IIS

Fig. 7: Range Queries. First row for Oldenburg and second row for San Francisco.
Each column contains queries of different size from 1% to 20%.

0 2 4
0

100

200

Num. of objects (×103)

O
ld

e
n
b
u
r
g

T
im

e
(
µ
s
)

1% - 10%

FNR-tree

baseline

IIS

0 2 4
0

200

400

600

800

Num. of objects (×103)

1% - 100%

FNR-tree

baseline

IIS

0 2 4
0

0.5

1

·104

Num. of objects (×103)

10% - 100%

FNR-tree

baseline

IIS

0 2 4
0

0.5

1

1.5

·104

Num. of objects (×103)

S
a
n

F
r
a
n
c
is
c
o

T
im

e
(
µ
s
)

FNR-tree

baseline

IIS

0 2 4
0

0.5

1

1.5

·104

Num. of objects (×103)

FNR-tree

baseline

IIS

0 2 4
0

0.5

1

1.5

·107

Num. of objects (×103)

FNR-tree

baseline

IIS

Fig. 8: Range Queries with Larger Temporal Extent. First row for Oldenburg
and second row for San Francisco. Each column indicates x% - y%, being x the
size of each spatial dimension (1% or 10%) and y the size of the time intervals
(10% or 100%).

results to iterate through. Hence, this scenario represents the worst case for our
proposal.

12 R. Rivera et al.

0 2 4
0

50

100

150

Num. of objects (×103)

O
ld

e
n
b
u
r
g

T
im

e
(
µ
s
)

1%

FNR-tree

baseline

IIS

0 2 4
0

200

400

600

800

1,000

Num. of objects (×103)

10%

FNR-tree

baseline

IIS

0 2 4
0

1

2

3

4
·104

Num. of objects (×103)

100%

FNR-tree

baseline

IIS

0 2 4
0

2,000

4,000

Num. of objects (×103)

S
a
n

F
r
a
n
c
is
c
o

T
im

e
(
µ
s
)

FNR-tree

baseline

IIS

0 2 4
0

2

4

·105

Num. of objects (×103)

FNR-tree

baseline

IIS

0 2 4
0

1

2

3

4

·107

Num. of objects (×103)

FNR-tree

baseline

IIS

Fig. 9: Time Slice Queries. First row for Oldenburg and second row for San Fran-
cisco. Each columns contains queries of different spatial extent (1% to 100%).

5 Conclusions

We have proposed a new data structure for trajectories of moving objects, which
movement is constrained to a network. Our proposal is inspired by two-level
indexes, such as the FNR-tree and MON-tree and, indeed, we use the same two-
dimensional R-tree for the spatial dimension. Hence, the difference from previous
solutions is in the temporal dimension. This is justified by our experimental
evaluation showing that the spatial dimension requires negligible space compared
with the temporal dimension. For this dimension, we propose a structure based
on a decomposition on independent sets of intervals and the use of succinct data
structures. Our experimental evaluation shows that the resulting structure is
smaller than previous solutions, and also faster for a broad set of queries.

The interval intersection problem can be reduced to 2-sided range report-
ing [11], a problem for which efficient data structures have been successfully
applied in LZ-indexes [3,4]. As these structures are not adaptive to the number
of independent interval sets, a combination of both approaches would be interest-
ing as future work. Second, to handle larger datasets, it is necessary to improve
construction time. Note, however, that we used larger datasets than those used
in the evaluation of the FNR-tree. Third, some parts of the structure could be
further optimized. We have observed that the distribution of the moving ob-
jects through the network is very skewed, which produces few temporal indexes
storing many intervals and many indexes storing very few intervals. Hence, in
order to use this index in practice, it is necessary to determine a threshold under
which the intervals are just stored in an array and sequentially searched. Finally,
bitmaps supporting append operations should be used to support dynamism.

Faster and Smaller Two-Level Index for Network-based Trajectories 13

References

1. de Almeida, V.T., Güting, R.H.: Indexing the trajectories of moving objects in
networks*. GeoInformatica 9(1), 33–60 (2005)

2. Barkan, Y.: RTree (2011), GitHub repository, https://github.com/nushoin/RTree

3. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: CPM. pp. 26–39 (2015)

4. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Flexible indexing
of repetitive collections. In: CiE. pp. 162–174 (2017)

5. Berg, M.d., Cheong, O., Kreveld, M.v., Overmars, M.: Computational Geometry:
Algorithms and Applications. Springer-Verlag TELOS, 3rd ed. edn. (2008)

6. Brinkhoff, T.: A framework for generating network-based moving objects. GeoIn-
formatica 6(2), 153–180 (2002)

7. Brisaboa, N.R., Fariña, A., Galaktionov, D., Rodŕıguez, M.A.: Compact trip rep-
resentation over networks. In: SPIRE. pp. 240–253 (2016)

8. Brisaboa, N.R., Gagie, T., Gómez-Brandón, A., Navarro, G., Paramá, J.R.: Effi-
cient compression and indexing of trajectories. In: SPIRE. pp. 103–115 (2017)

9. Brisaboa, N.R., Gómez-Brandón, A., Navarro, G., Paramá, J.R.: Gract: A grammar
based compressed representation of trajectories. In: SPIRE. pp. 218–230 (2016)

10. Brisaboa, N.R., Ladra, S., Navarro, G.: k2-Trees for Compact Web Graph Repre-
sentation. In: SPIRE. pp. 18–30 (2009)

11. Brisaboa, N.R., Luaces, M.R., Navarro, G., Seco, D.: Space-efficient representations
of rectangle datasets supporting orthogonal range querying. Inf. Syst. 38(5), 635–
655 (2013)

12. Ding, Z., Yang, B., Gting, R.H., Li, Y.: Network-matched trajectory-based moving-
object database: Models and applications. IEEE Transactions on Intelligent Trans-
portation Systems 16(4), 1918–1928 (2015)

13. Fredman, M.L.: On computing the length of longest increasing subsequences. Dis-
crete Math. 11(1), 29–35 (1975)

14. Frentzos, E.: Indexing objects moving on fixed networks. In: SSTD. pp. 289–305
(2003)

15. Garrison, E.: intervaltree (2011), GitHub repository,
https://github.com/ekg/intervaltree

16. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play
with succinct data structures. In: SEA. pp. 326–337 (2014)

17. Guttman, A.: R-trees: A dynamic index structure for spatial searching. SIGMOD
Rec. 14(2), 47–57 (1984)

18. Han, Y., Sun, W., Zheng, B.: Compress: A comprehensive framework of trajec-
tory compression in road networks. ACM Trans. Database Syst. 42(2), 11:1–11:49
(2017)

19. Kellaris, G., Pelekis, N., Theodoridis, Y.: Map-matched trajectory compression. J.
Syst. Softw. 86(6), 1566–1579 (2013)

20. Koide, S., Tadokoro, Y., Xiao, C., Ishikawa, Y.: CiNCT: Compression and retrieval
for massive vehicular trajectories via relative movement labeling. In: ICDE. pp.
1097–1108 (2018)

21. Krogh, B., Pelekis, N., Theodoridis, Y., Torp, K.: Path-based queries on trajectory
data. In: SIGSPATIAL. pp. 341–350 (2014)

22. Meratnia, N., de By, R.A.: Spatiotemporal compression techniques for moving
point objects. In: EDBT. pp. 765–782 (2004)

14 R. Rivera et al.

23. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.
39(1) (2007)

24. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: ALENEX. pp. 60–70 (2007), http://dl.acm.org/citation.cfm?id=2791188.
2791194

25. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for
moving object trajectories. In: VLDB. pp. 395–406 (2000)

26. Potamias, M., Patroumpas, K., Sellis, T.: Sampling trajectory streams with spa-
tiotemporal criteria. In: SSDBM. pp. 275–284 (2006)

27. Sandu Popa, I., Zeitouni, K., Oria, V., Barth, D., Vial, S.: Indexing in-network
trajectory flows. The VLDB Journal 20(5), 643 (2011)

28. Schmid, F., Richter, K.F., Laube, P.: Semantic trajectory compression. In: SSTD.
pp. 411–416 (2009)

29. Schmidt, J.M.: Interval stabbing problems in small integer ranges. In: ISAAC. pp.
163–172 (2009)

30. Schmidt, J.M.: Publications by Jens M. Schmidt. http://www4.tu-ilmenau.de/
combinatorial-optimization/ShowPub.html (2018), Last accessed 1 May 2018

31. Tao, Y., Papadias, D.: MV3R-Tree: A Spatio-Temporal Access Method for Times-
tamp and Interval Queries. In: VLDB. pp. 431–440 (2001)

http://dl.acm.org/citation.cfm?id=2791188.2791194
http://dl.acm.org/citation.cfm?id=2791188.2791194
http://www4.tu-ilmenau.de/combinatorial-optimization/ShowPub.html
http://www4.tu-ilmenau.de/combinatorial-optimization/ShowPub.html

	Faster and Smaller Two-Level Index for Network-based Trajectories

