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Abstract. We consider the communication complexity of fundamen-
tal longest common prefix (Lcp) problems. In the simplest version, two
parties, Alice and Bob, each hold a string, A and B, and we want to
determine the length of their longest common prefix ℓ = Lcp(A,B)
using as few rounds and bits of communication as possible. We show
that if the longest common prefix of A and B is compressible, then we
can significantly reduce the number of rounds compared to the optimal
uncompressed protocol, while achieving the same (or fewer) bits of com-
munication. Namely, if the longest common prefix has an LZ77 parse of
z phrases, only O(lg z) rounds and O(lg ℓ) total communication is nec-
essary. We extend the result to the natural case when Bob holds a set
of strings B1, . . . , Bk, and the goal is to find the length of the maximal
longest prefix shared by A and any of B1, . . . , Bk. Here, we give a pro-
tocol with O(log z) rounds and O(lg z lg k + lg ℓ) total communication.
We present our result in the public-coin model of computation but by
a standard technique our results generalize to the private-coin model.
Furthermore, if we view the input strings as integers the problems are
the greater-than problem and the predecessor problem.

Keywords: communication complexity, LZ77, compression, upper bound, out-
put sensitive, longest common prefix, predecessor

1 Introduction

Communication complexity is a basic, useful model, introduced by Yao [14],
which quantifies the total number of bits of communication and rounds of com-
munication required between two or more players to compute a function, where
each player holds only part the function’s input. A detailed description of the
model can be found, for example, in the book by Kushilevitz and Nisam [5].

Communication complexity is widely studied and has found application in
many areas, including problems such as equality, membership, greater-than, and
predecessor (see the recent book by Rao and Yehudayoff [9]). For the approxi-
mate string matching problem, the paper by Starikovskaya [12] studies its de-
terministic one-way communication complexity, with application to streaming
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algorithms, and provides the first sublinear-space algorithm. Apart from these
results, little work seems to have been done in general for the communication
complexity of string problems [13].

In this paper, we study the fundamental longest common prefix problem, de-
noted Lcp, where Alice and Bob each hold a string, A and B and want to deter-
mine the length of the longest common prefix of A and B, that is, the maximum
ℓ ≥ ℓ, such that A[1..ℓ] = B[1..ℓ] (where ℓ = 0 indicates the empty prefix). This
problem is also called the greater than problem, since if we view both A and B as
integers, the position immediately after their longest common prefix determines
which is larger and smaller. The complexity is measured using the number of
rounds required and the total amount of bits exchanged in the communication.
An optimal randomized protocol for this problem uses O(lg n) communication
and O(lg n) rounds [11,8] where n is the length of the strings. Other trade-offs
between communication and rounds are also possible [10]. Buhrman et al. [2]
describe how to compute Lcp in O(1) rounds and O(nǫ) communication.

We show that if A and B are compressible we can significantly reduce the
number of needed rounds while simultaneously matching the O(lg n) bound on
the number of bits of communication. With the classic and widely used Lempel-
Ziv 77 (LZ77) compression scheme [15] we obtain the following bound.

Theorem 1. The Lcp problem has a randomized public-coin O(lg z)-round pro-

tocol with O(lg ℓ) communication complexity, where ℓ ≤ n is the length of the

longest common prefix of A and B and z ≤ ℓ is the number of phrases in the

LZ77 parse of this prefix.

Compared to the optimal uncompressed bound we reduce the number of
rounds from O(lg n) to O(lg z) (where typically z is much smaller than ℓ). At
the same time we achieve O(lg ℓ) = O(lg n) communication complexity and
thus match or improve the O(lg n) uncompressed bound. Note that the number
of rounds is both compressed and output sensitive and the communication is
output sensitive.

As far as we know, this is the first result studying the communication com-
plexity problems in LZ77 compressed strings. A previous result by Bar-Yossef
et al. [1] gives some impossibility results on compressing the text for (approxi-
mate) string matching in the sketching model, where a sketching algorithm can
be seen as a public-coin one-way communication complexity protocol. Here we
exploit the fact that the common prefixes have the same parsing into phrases
up to a certain point, and that the “mismatching” phrase has a back pointer
to the portion of the text represented by the previous phrases: Alice and Bob
can thus identify the mismatching symbol inside that phrase without further
communication (see the “techniques” paragraph).

We extend the result stated in Theorem 1 so as to compute longest com-
mon prefixes when Bob holds a set of k strings B1, . . . , Bk, and the goal is to
compute the maximal longest common prefix between A and any of the strings
B1, . . . , Bk. This problem, denoted Lcp

k, naturally captures the distributed sce-
nario, where clients need to search for query strings in a text data base stored
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at a server. To efficiently handle many queries we want to reduce both commu-
nication and rounds for each search. If we again view the strings as integers this
is the predecessor problem. We generalize Theorem 1 to this scenario.

Theorem 2. The Lcpk problem has a randomized public-coin O(lg z) round

communication protocol with O(lg z lg k+lg ℓ) communication complexity, where

ℓ is the maximal common prefix between A and any one of B1, . . . , Bk, and z is

the number of phrases in the LZ77 parse of this prefix.

Compared to Theorem 1 we obtain the same number of rounds and only
increase the total communication by an additive O(lg z lg k) term. As z ≤ ℓ the
total communication increases by at most a factor lg k.

The mentioned results hold only for LZ77 parses without self-references (see
Sec. 2). We also show how to handle self-referential LZ77 parses and obtain
the following bounds, where we add either extra O(lg lg ℓ) rounds or extra
O(lg lg lg |A|) communication.

Theorem 3. The Lcp problem has an randomized public-coin protocol with

1. O(lg z + lg lg ℓ) rounds and O(lg ℓ) communication complexity,

2. O(lg z) rounds and O(lg ℓ+ lg lg lg |A|) communication complexity

where ℓ is the length of the longest common prefix of A and B, and z is the

number of phrases in the self-referential LZ77 parse of this prefix.

Theorem 4. The Lcpk problem has a randomized public-coin protocol with

1. O(lg z + lg lg ℓ) rounds and O(lg z lg k + lg ℓ) communication complexity,

2. O(lg z) rounds and O(lg z lg k+ lg ℓ+ lg lg lg |A|) communication complexity

where ℓ is the length of the maximal common prefix between A and any one of

B1, . . . , Bk, and z is the number of phrases in the self-referential LZ77 parse of

this prefix.

Turning again to LZ77 parses without self-references we also show the fol-
lowing trade-offs between rounds and communication.

Theorem 5. For any constant ǫ > 0 the Lcp problem has a randomized public-

coin protocol with

1. O(1) rounds and O(zǫA) total communication where zA is the number of

phrases in the LZ77 parse of A
2. O(lg lg ℓ) rounds and O(zǫ) total communication where z is the number of

phrases in the LZ77 parse of the longest common prefix between A and B

Using the standard transformation technique by Newman [7] all of the above
results can be converted into private-coin results for bounded length strings: If
the sum of the lengths of the strings is ≤ n, then, Newman’s construction adds
an O(lg n) term in communication complexity, and only gives rise to 1 additional
round.
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Techniques. Our results rely on the following key idea. First, we want to per-
form a binary search over the LZ77-parses of the strings, to find the first phrase
where Alice and Bob disagree. Then, the longest common prefix must end some-
where in the next phrase (see Figure 1). So Alice needs only to send the offset
and length of her next phrase, and Bob can determine the longest common prefix
with his string or strings (as proven in Lemma 6).

A

B

1 . . . . . . . . . . . . ℓ

Fig. 1. If the longest common prefix L of A and B has z phrases, then the first z − 1
phrases of A, B, and L are identical.

To implement the idea efficiently, we use standard techniques that allow Alice
and Bob to check if a specific prefix of their strings match using O(1) commu-
nication, with only constant probability of error (we call this the Equality

problem). Similarly, if Bob holds k strings, they can check whether any of the
k strings matches Alice’s string with only O(log k) communication, with con-
stant error probability (we call this the Membership problem). This leads to
following O(log z) round communication protocol.

1. Alice and Bob do an exponential search, comparing the first, two first, four
first, etc, phrases of their strings using Equality or Membership, until
they find a mismatch.

2. Alice and Bob do a binary search on the last interval of phrases from Step
1, again, using Equality or Membership, until they find their longest
common prefix up to a phrase border.

3. Alice sends the offset and length of her next phrase, and Bob uses this to
determine the longest common prefix.

To efficiently cope with errors in each step (which can potentially accumu-
late), we show how to extend techniques for noisy binary search [4] to an ex-
ponential search. Our new noisy exponential search only increase the number of
rounds by a constant factor.

Paper outline. In Section 2, we review protocols for Equality and Member-

ship. Section 2 also contains a formal definition of the LZ77-parse of a string.
In Section 3, we recall efficient techniques to handle errors using noisy binary
search, and extend them to exponential search. In Section 4 we go on to prove
Theorem 1 and Theorem 2. In Section 5, we show how to extend our results
to self-referencing LZ77 (Theorems 3 and 4). Finally, in section 6, we give the
constant-round and near-constant round protocols promised in Theorem 5.
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2 Definition and Preliminaries

A string S of length n = |S| is a sequence of n symbols S[1] · · ·S[n] drawn from
an alphabet Σ. The sequence S[i, j] is the substring of S given by S[i] · · ·S[j]
and, if i = 1, this substring is a prefix of S. Strings can be concatenated, i.e. S =
S[1, k]S[k+1, n]. Let Lcp(A,B) denote the length of the longest common prefix
between strings A and B. Also, denote by [u] the set of integers {1, 2, . . . , u}.

Communication Complexity Primitives. We consider the public-coin and
private-coin randomized communication complexity models. In the public-coin
model the parties share an infinite string of independent unbiased coin tosses
and the parties are otherwise deterministic. The requirement is that for every
pair of inputs the output is correct with probability at least 1 − ǫ for some
specified 1/2 > ǫ > 0, where the probability is on the shared random string. We
note that any constant probability of success can be amplified to an arbitrarily
small constant at the cost of a constant factor overhead in communication. In
the private-coin model, the parties do not share a random string, but are instead
allowed to be randomized using private randomness. Newman [7] showed that
any result in the public-coin model can be transformed into private-coin model
result at the cost of an additive O(log logT ) bits of communication, where T
is the number of different inputs to the players. In our results this leads to an
O(log n) additive overhead, if we restrict our input to bounded length strings
where the sum of the lengths of the strings is ≤ n.

In the Membership problem, Alice holds a string A of length |A| ≤ n, and
Bob holds a set B of k strings. The goal is to determine whether A ∈ B (we
assume that n and k are known to both parties) [9].

Lemma 1. The Membership problem has a public-coin randomized 1-round
communication protocol with m communication complexity and error probability

k2−m, for any integer m > 0.

Proof sketch. Let F : {0, 1}n → {0, 1}m be a random linear function over GF (2)
where the coefficients of F are read from the shared random source (public coin).
Alice applies F to A and sends the resulting m bits to Bob, i.e., she computes
the product between a random m × n matrix and her string as a vector. Bob
applies the same function to each of his strings, i.e., he computes the product
between the same random matrix and each of his strings. If one of these products
is the same as the one he received from Alice he sends a “1” to Alice indicating a
match. This protocol has no false-negatives and by union bound the probability
of a false-positive is at most k2−m. For further details see e.g. [2,6]. ⊓⊔

In the Equality problem, Alice holds a string A of size |A| ≤ n, and Bob
holds a string B. The goal is to determine whether A = B (we assume that n is
known to both parties). Lemma 1 implies the following corollary.

Corollary 1. The Equality problem has a public-coin randomized 1-round
communication protocol with m communication complexity and error probabil-

ity 2−m.
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Lempel-Ziv Compression The LZ77 parse [15] of a string S of length n
divides S into z substrings f1f2 . . . fz, called phrases, in a greedy left-to-right
order. The ith phrase fi starting at position ui is the longest substring having
a least one occurrence starting to the left of ui plus the following symbol. To
compress S, we represent each phrase as a tuple (si, li, αi) ∈ ([n]× [n]×Σ), such
that si is the position of the previous occurrence, li is its length, and αi is the
symbol at position ui + li. It follows that s1 = l1 = 0, u1 = 1, α1 = S[1] and we
define ei = ui + li for i ∈ z . That is, the ith phrase of S ends at position ei.
We call the positions e1, . . . , ez the borders of S and the substring S[si, si + li]
is the source source of the ith phrase fi = S[ui, ui + li].

When a phrase is allowed to overlap with its source, the parse is self-referential.
A more restricted version does not allow self-references and thus require that
si + li ≤ ui for i ∈ [z]. We consider LZ77 parse without self-references unless
explecitly stated. An LZ77 parse of S can be found greedily in O(n) time from
the suffix tree of S. It is easy to see that z = Ω(lg n) if self-references are not
allowed, while z = Ω(1) for self-referential parses.

3 Noisy Search

The noisy binary search problem is to find an element xt among a sequence of
elements x1, . . . xn where xi ≤ xi+1 using only comparisons in a binary search.
Each comparison may fail with a constant probability less than 1/2 and faults
are independent.

Lemma 2 (Feige et al. [4] Theorem 3.2). For every constant Q < 1/2, we
can solve the noisy binary search problem on n elements with probability at least

1−Q in O(lg(n/Q)) steps.

We now show how to generalize the algorithm by Feige at al. to solve the
noisy exponential search problem. That is, given a sequence x1, x2, . . . where
xi ≤ xi+1 and an element xℓ find an element xr such that ℓ ≤ r ≤ 2ℓ using
exponential search.

Lemma 3. For every constant Q < 1/2, we can solve the noisy exponential

search problem searching for xℓ with probability at least 1 − Q in O(lg(ℓ/Q))
steps.

Proof. In case of no errors we can find xr on O(lg ℓ) steps comparing xℓ and xi

for i = 1, 2, 4, 8 . . . until xi ≥ xℓ. At this point we have ℓ ≤ i ≤ 2ℓ.
Consider the decision tree given by this algorithm. This tree is simply a path

v0, v1, v2, . . . and when reaching vertex vi the algorithm compares elements xl

and x2i . In order to handle failing comparisons we tranform this tree by adding
a path with length li (to be specified later) as a child of vertex vi. Denote such
a path with pi. The search now performs a walk in this tree starting in the the
root and progresses as follows: Reaching vertex vi we first check if xl ≥ x2i−1 . If
not, this reveals an earlier faulty comparison and we backtrack by moving to the
parent. Otherwise, we check if xl ≥ x2i . If so we move to vertex vi+1. Otherwise,
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we move to the first vertex on the path pi. Reaching a vertex u on a path pi we
test if xl ≥ x2i−1 and if xl < x2i . If both tests are positive, we move to the only
child of u. Otherwise, this reveals an earlier faulty comparison and we backtrack
by moving to the parent of u.

The search can be modeled as a Markov process. Assume that ⌈lg ℓ⌉ = j
and thus j = O(lg ℓ) and direct all edges towards the leaf u on the path pj .
For every vertex, exactly one adjacent edge is directed away from u and the
remaining edges are directed towards u. The transition probability along an
outgoing edge of a vertex is at greater than 1/2 and the transition probability
along the remaining edges is less than 1/2. Let b be the number of backward
transitions and f the number of forward transitions. We need to show that
f − b ≥ j + lj with probability at least 1 − Q for Q < 1/2 implying that the
search terminates in the leaf u. Setting li = ic1 this follows after c2(lg(2

j/Q)) =
O(lg(ℓ/Q)) rounds from Chernoff’s bound [3] with suitable chosen constants c1
and c2. ⊓⊔

4 Communication Protocol for Lcp

We now present our protocol for the Lcp problem without self-references. We
consider the case with self-references in the next section. First, we give an efficient
uncompressed output sensitive protocol that works for an arbitrary alphabet
(Lemma 4). Secondly, we show how to encode LZ77 strings as strings from a
small alphabet (Lemma 5) which allows us to efficiently determine the first
phrase where Alice and Bob disagree. Thirdly, we show that given this phrase
Alice and Bob can directly solve Lcp (Lemma 6). Combining these results leads
to Theorem 1. Finally, we generalize the results to the Lcp

k case.
First we show how to solve the Lcp problem with output-sensitive complexity

for both the number of rounds and the amount of bits of communication.

Lemma 4. Let A and B be strings over an alphabet Σ known to the parties.

The Lcp problem has a pulic-coin randomized O(lg ℓ)-round communication pro-

tocol with O(lg ℓ) communication complexity, where ℓ is the length of the longest

common prefix between A and B.

Proof. Alice and Bob compare prefixes of exponentially increasing length using
equality, and stop after the first mismatch. Let t be the length of the prefixes
that do not match and observe that t ≤ 2ℓ. They now do a binary search on
the interval [0, t], using equality to decide if the left or right end of the interval
should be updated to the midpoint in each iteration. The parties use Corollary 1
with m = 2, and new random bits from the shared random source for every
equality check. Thus, the probability of a false-positive is at most 1/4, and the
faults are independent. Using Lemma 3 and Lemma 2 we get that we can solve
the problem in O(lg(ℓ/Q)) rounds of communication with probability at least
1−Q for any constant Q < 1/2. ⊓⊔

Note that the size of the alphabet Σ does not affect the complexity of this
protocol. Alice and Bob do however need to agree on how many bits to use per
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symbol in order to use the same number of random bits for the equality checks.
Because Σ is known to the parties, they sort the alphabet and use lg |Σ| bits
per symbol.

We move on to consider how to handle LZ77 compressed strings. Recall that
the ith phrase in the LZ77 parse of a string S is represented as a tuple (si, li, αi)
consisting of the source si, the length li of the source, and a symbol αi ∈ Σ.
Observe that the LZ77 parse can be seen as a string where each tuple describing a
phrase corresponds to a symbol in this string. Because we consider LZ77 without
self-references a phrase is never longer than sum of the lengths of the previous
phrases and we can thus bound the number of bits required to write a phrase.

Lemma 5. Let Zi = (s1, l1, α1), . . . , (si, li, αi) be the first i elements in the LZ77

parse of a string S. Then, si and li can be written in binary with i bits.

Proof. Recall that ej is the position in S of the last symbol in the jth phrase.
Since we have no self-references si and li are both no larger than ei−1 they can
be written with lg ei−1 bits. By definition uj = ej−1+1. Therefore, ej = uj+lj =
ej−1 + 1 + lj ≤ 2ej−1 + 1, and it follows that ei−1 ≤ 2ei−2 + 1 ≤ · · · ≤ 2i − 1
since e1 = 1. ⊓⊔

We show that ℓ = Lcp(A,B) can be determined from Lcp(ZA, ZB) with
only one round and O(lg ℓ) communication, where ZA and ZB are the respective
LZ77 parses of A and B.

While a LZ77 parse of a string is not necessarily unique, in this case, we can
assume that the parties as part of the protocol agree deterministically upon their
same decisions on LZ77-compression algorithm (e.g. taking always the leftmost
source when there are multiple possibilities). This ensures that we obtain the
same parsing for equal strings, independently and without any communication.

Lemma 6. Let A and B be strings and let ZA and ZB be their respective LZ77

parses. If Alice knows A and Bob knows B and the length of the longest common

prefix Lcp(ZA, ZB), then they can determine the length ℓ = Lcp(A,B) of the

longest common prefix of A and B in O(1) round and O(lg ℓ) communication.

Proof. First, ZA and ZB themselves can be seen as strings over the special
alphabet Σ′ ≡ ([n] × [n] × Σ) of tuples. Letting z = Lcp(ZA, ZB), these LZ77
parses of A and B are identical up until but no longer than their zth tuple. Now,
let ℓ = Lcp(A,B). Let ai and bi denote the i

th phrase border in the LZ77 parse of
A and B respectively. Observe that A[1, az] = B[1, bz] but A[1, az+1] 6= B[1, bz+1]
because of how we choose z and, thus, az = bz ≤ ℓ < az+1, bz+1. Let sz+1, lz+1 be
the source and length of the (z+1)th phrase in ZA. Alice sends sz+1, lz+1 to Bob
in one round with O(lg az) = O(lg ℓ) bits of communication since sz+1, lz+1 ≤ az.
At this point, it is crucial to observe that Bob can recoverA[1, az+1] by definition
of LZ77 parsing: he deduces that A[1, az+1] = B[1, bz]B[sz+1, sz+1 + lz+1], from
which he can compute Lcp(A[1, az+1], B[1, bz+1]) = Lcp(A,B). ⊓⊔

We can now combine Lemmas 4, 5, and 6 to prove Theorem 1. Alice and
Bob construct the LZ77 parse of their respective strings and interprets the parse
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as a string. Denote these strings by ZA and ZB. They first use Lemma 4 to
determine Lcp(ZA, ZB), where the parties decide to use 2i+ lg |Σ| random bits
for the equality check of the ith symbols (from Σ′), which suffices by Lemma 5.
Then they apply Lemma 6 to determine Lcp(A,B). In conclusion this proves
Theorem 1.

4.1 The Lcp
k case

In this section we generalize the result on LCP to the case where Bob holds
multiple strings. Here, Alice knows a string A and Bob knows strings B1, . . . , Bk,
where all strings are drawn from an alphabet Σ known to the parties.

The main idea is substitute the equality-tests by membership queries. We
first generalize Lemma 4 to the Lcp

k-case.

Lemma 7. The Lcpk-problem has a randomized public-coin O(lg ℓ)-round com-

munication protocol with O(lg ℓ lg k) communication complexity, where ℓ is the

length of the maximal longest common prefix between A and any Bi.

Proof. Along the same lines as the proof of Lemma 4, Alice and Bob per-
form membership-queries on exponentially increasing prefixes, and then, per-
form membership-queries to guide a binary search. They use Lemma 1 with
m = 2 lg k, and exploit shared randomness as in the previous case. Again, the
probability of a false positive is ≤ 1/4, and the faults are independent. Thus
Lemma 3 and Lemma 2 gives us a O(lg ℓ) round communication protocol with
total error probability 1−Q for any constant choice of Q < 1/2.

Since there are O(lg ℓ) rounds in which we spend O(lg k) communication, the
total communication becomes O(lg ℓ lg k). ⊓⊔

We go on to show that the maximal Lcp(A,Bi) can be determined from
solving Lcp

k on ZA and {ZB1
, . . . , ZBk

} with only one additional round and
O(lg n) communication.

Lemma 8. Let ZA, ZB1
, . . . , ZBk

be the LZ77 parses of the strings A,B1, . . . , Bk.

If Alice knows A, and Bob knows B1, . . . , Bk and the length of the maximal

longest common prefix between ZA and any ZBi
, they can find maxi Lcp(A,Bi)

in O(1) round and O(lg n) communication.

Proof. In this case, Bob holds a set, B′, of at least one string that matches Alice’s
first z phrases, and no strings that match Alice’s first z+1 phrases. Thus, if Alice
sends the offset and length of her next phrase, he may determine Lcp(A,Bi) for
all strings Bi ∈ B′. Since the maximal Lcp among Bi ∈ B′ is indeed the maximal
over all Bi ∈ B, we are done. ⊓⊔

Combining Lemma 7 and Lemma 8 we get Theorem 2.
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5 Self-referencing LZ77

We now consider how to handle LZ77 parses with self-references. The main
hurdle is that Lemma 5 does not apply in this case as there is no bound on the
phrase length except the length of the string. This becomes a problem when the
parties need to agree on the number of bits to use per symbol when computing
Lcp of ZA and ZB, but also when Alice needs to send Bob the source and length
of a phrase in order for him to decide Lcp(A,B).

First we show how Alice and Bob can find a bound on the number of random
bits to use per symbol when computing Lcp(ZA, ZB).

Lemma 9. Bob and Alice can find an upper bound ℓ′on the length of the longest

common prefix between A and B where

1. ℓ′ ≤ ℓ2 using O(lg lg ℓ) rounds and O(lg lg ℓ) total communication

2. ℓ′ ≤ |A|2 using O(1) round and O(lg lg lg |A|) total communication.

Proof. Part (1): Alice and Bob do a double exponential search for ℓ and find
a number ℓ ≤ ℓ′ ≤ ℓ2 using equality checks on prefixes of their uncompressed
strings in O(lg lg ℓ) rounds. Again, at the cost of only a constant factor, we apply
Lemma 3 to deal with the probability of false positives.

Part (2): Alice sends the minimal i such that |A| ≤ 22
i

thus i = ⌈lg lg |A|⌉

can be written in O(lg lg lg |A|) bits. Alice and Bob can now use n = 22
i

as an

upper bound for ℓ, since ℓ ≤ |A| ≤ 22
i

< |A|2. ⊓⊔

Assume that Alice and Bob find a bound ℓ′ using one of those techniques,
then they can safely truncate their strings to length ℓ′. Now they know that
every symbol in ZA and ZB can be written with O(lg ℓ′ + lg |Σ|) bits, and
thus, they agree on the number of random bits to use per symbol when doing
equality (membership) tests. Using Lemma 4 they can now find the length of
the longest common prefix between ZA and ZB in O(lg ℓ) rounds with O(lg ℓ)
communication.

We now show how to generalize Lemma 6 to the case of self-referential parses.

Lemma 10. Let A and B be strings and let ZA and ZB be their respective self-
referential LZ77 parses. If Alice knows A and Bob knows B and the length of the

longest common prefix between ZA and ZB, then they can determine the length

ℓ of the longest common prefix of A and B in

1. O(1 + lg lg ℓ) rounds and O(lg ℓ) communication

2. O(1) rounds and O(lg ℓ+ lg lg lg |A|) communication

Proof. Let si, ei and li be the respective source, border and length of the ith

phrase in ZA. The proof is the same as in Lemma 6 except that the length lz+1

of the (z+1)th phrase in ZA that Alice sends to Bob is no longer bounded by ℓ.
There are two cases. If lz+1 ≤ 2ez, then lz+1 ≤ 2ℓ, and Alice can send lz+1

to Bob in one round and O(lg ℓ) bits and we are done.
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If lz+1 > 2ez then the source of the (z + 1)th phrase must overlap with the
phrase itself and thus the phrase is periodic with period length at most ez and
has at least 2 full repetitions of its period. Alice sends the starting position of
the source of the phrase si+1 along with a message indicating that we are in
this case to Bob in O(lg ℓ) bits. Now Bob can check if they agree on next 2ez
symbols. If this is not the case, he has also determined Lcp(A,B) and we are
done. Otherwise, they agree on the next 2ez symbols and therefore (z + 1)th

phrases of both A and B are periodic with the same period. What remains is
to determine which phrase that is shorter. Let la and lb denote the lengths of
respectively Alice’s and Bob’s next phrase. Then (1) follows from Alice and Bob
first computing a number ℓ′ ≤ ℓ2 using a double exponential search and equality
checks in O(lg lg ℓ) rounds and total communication. Clearly either la or lb must
be shorter than ℓ′ and the party with the shortest phrase sends its length to the
other party in O(lg ℓ) bits and both can then determine Lcp(A,B). To get the

result in (2) Alice sends the smallest integer i such that la ≤ 22
i

in a single round

and O(lg lg lg |A|) bits of communication. Bob then observes that if lb ≤ 22
i−1

,

then lb = ℓ and he sends ℓ to Alice using O(lg ℓ) bits. If lb > 22
i

then la = ℓ

and he informs Alice to send him la in O(lg ℓ) bits. Finally, if 22
i
−1 < lb and

la ≤ 22
i

≤ ℓ2 he sends lb to Alice using O(lg ℓ) bits. ⊓⊔

Theorem 3 now follows from Lemmas 4, 9, and 10.

5.1 Lcpk in the self-referential case.

Finally, we may generalize Theorem 2 to the self-referential case. Substituting
equality with membership, we may directly translate Lemma 9:

Lemma 11. Bob and Alice can find an upper bound on the length ℓ′ of the

maximal longest common prefix between A and B1, . . . , Bk where

1. ℓ′ ≤ ℓ2 using O(lg lg ℓ) rounds and O(lg lg ℓ log k) total communication

2. ℓ′ ≤ |A|2 using O(1) round and O(lg lg lg |A|) total communication.

Using the lemma above, we can generalize Corollary 10 to the LCPk-case.

Lemma 12. Let A and B1, . . . , Bk be strings, and let ZA and ZBi
be their re-

spective self-referential LZ77 parses. If Alice knows A and Bob knows B1, . . . , Bk

and Bob knows the length of the maximal longest common prefix between ZA and

any ZBi
, then they can determine ℓ in

1. O(1 + lg lg ℓ) rounds and O(lg ℓ lg k) communication

2. O(1) rounds and O(lg ℓ lg k + lg lg lg |A|) communication

Proof tweak. Alice and Bob have already found a common prefix of size ez –
question is whether a longer common prefix exists. As before, if Alice’s next
phrase is shorter than 2ez, she may send it. Otherwise, she sends the offset, and
indicates we are in this case. Now, Bob can check if any of his strings agree with
Alice’s on the next 2ez symbols. If none do, we are done. If several do, he forgets
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all but the one with the longest (z + 1)’st phrase, and continue as in the proof
of Corollary 10. ⊓⊔

Theorem 4 now follows from the combination of Lemmas 11 and 12.

6 Obtaining a trade-off via D-ary search.

We show that the technique of Buhrman et al. [2], to compute Lcp of two strings
of length n in O(1) rounds and O(nǫ) communication, can be used to obtain
a compressed communication complexity. Note that we again consider LZ77
compression without self-references. We first show the following generalization
of Lemma 4.

Lemma 13. Let A and B be strings over an alphabet Σ known to the parties.

The Lcp problem has a public-coin randomized communication protocol with

1. O(1) rounds and O(|A|ǫ) communication
2. O(lg lg ℓ) rounds and O(ℓǫ) communication

where ℓ is the length of the longest common prefix between A and B, and ǫ > 0
is any arbitrarily small constant.

Proof. Assume the parties agree on some parameter C and have previous knowl-
edge of some constant ǫ′ with 0 < ǫ′ < ǫ (i.e. ǫ′ and ǫ are plugged into their
protocol). They perform a D-ary search in the interval [−1, C] with D = Cǫ′ . In
each round, they split the feasible interval into D chunks, and perform equality
tests from Corollary 1 with m = 2 lg(D/ǫ′) on the corresponding prefixes. The
feasible interval is updated to be the leftmost chunk where the test fails. There
are lgD C = 1/ǫ′ = O(1) rounds. The communication per round is 2D lg(D/ǫ′)
and the total communication is 1/ǫ′ ·2D lg(D/ǫ′) = O(Cǫ′ lgC). The probability
of a false positive for the equality test is 2−m, and thus, by a union bound overD
comparisons in each round and 1/ǫ′ rounds, the combined probability of failure
becomes 1/4.

1. Alice sends |A| to Bob in lg |A| = O(|A|ǫ) bits and they use C = |A|. The
total communication is then O(Cǫ′ lgC) = O(|A|ǫ) with O(1) rounds.

2. Alice and Bob use Lemma 9 to find an ℓ′ such that ℓ ≤ ℓ′ ≤ ℓ2 in O(lg lg ℓ)
rounds and communication. They run the D-ary search protocol where ǫ′ <
ǫ/4, setting C = ℓ′. The extra communication is O(Cǫ′ lgC) = O(ℓǫ). ⊓⊔

We can now combine Lemmas 13, 5, and 6 to prove Theorem 5. Alice and
Bob construct the LZ77 parse of their respective strings and interpret the parses
as a strings, denoted by ZA and ZB. They first use Lemma 13 to determine
Lcp(ZA, ZB), and then Lemma 6 to determine Lcp(A,B). The parties use 2i+
lg |Σ| random bits for the ith symbol, which suffices by Lemma 5. This enables
them to apply Lemma 13 to ZA and ZB. In conclusion this proves Theorem 5.

We note without proof that this trade-off also generalizes to self-referential
parses by paying an additive extraO(lg lg lg |A|) in communication for Theorem 5
(1) and an additive O(lg ℓ) communication cost for Theorem 5 (2). The same
goes for Lcpk where the comminication increases by a factor O(lg k) simply by
increasing m by a factor lg k and using the techniques already described.
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