

Delft University of Technology

Optimization of swarm behavior assisted by an automatic local proof for a pattern
formation task

Coppola, Mario; de Croon, Guido C.H.E.

DOI
10.1007/978-3-030-00533-7_10
Publication date
2018
Document Version
Accepted author manuscript
Published in
Swarm Intelligence - 11th International Conference, ANTS 2018, Proceedings

Citation (APA)
Coppola, M., & de Croon, G. C. H. E. (2018). Optimization of swarm behavior assisted by an automatic local
proof for a pattern formation task. In M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. Reina, & V.
Trianni (Eds.), Swarm Intelligence - 11th International Conference, ANTS 2018, Proceedings (Vol. 11172
LNCS, pp. 123-134). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics); Vol. 11172 LNCS). Springer. https://doi.org/10.1007/978-
3-030-00533-7_10
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-00533-7_10
https://doi.org/10.1007/978-3-030-00533-7_10
https://doi.org/10.1007/978-3-030-00533-7_10

Optimization of Swarm Behavior Assisted
by an Automatic Local Proof for a

Pattern Formation Task

Mario Coppola[0000−0003−4694−2960] and Guido C.H.E. de
Croon[0000−0001−8265−1496]

Faculty of Aerospace Engineering,
Delft University of Technology, Delft, The Netherlands

{m.coppola, g.c.h.e.decroon}@tudelft.nl

Abstract. In this work, we optimize the behavior of swarm agents in a
pattern formation task. We start with a local behavior, expressed as a
local state-action map, that has been formally proven to lead the swarm
to always eventually form the desired pattern. We seek to optimize this
for performance while keeping the formal proof. First, the state-action
map is pruned to remove unnecessary state-action pairs, reducing the
solution space. Then, the probabilities of executing the remaining actions
are tuned with a genetic algorithm. The final controllers allow the swarm
to form the patterns up to orders of magnitude faster than with the
original behavior. The optimization is found to suffer from scalability
issues. These may be tackled in future work by automatically minimizing
the size of the local state-action map with a further direct focus on
performance.

1 Introduction

Collaboration between autonomous agents, while already a difficult task in it-
self, becomes increasingly challenging when dealing with swarm of robots with
limited on-board sensing and computing capacity. In recent work, detailed in
[1], we introduced a method to extract local behaviors with which very lim-
ited agents could arrange into a desired shape. The agents were: homogeneous
(identical and without hierarchy), anonymous (did not have identities), reactive
(memoryless), could not communicate, did not have global position information,
did not (explicitly) know the goal of the swarm, and operated asynchronously
in an unbounded space. The only knowledge available to the agents in the de-
cision making was: 1) a common heading direction (i.e., North), 2) the relative
location of their neighbors within a maximum range (e.g., similar to the robotic
system in [2]). Despite such limited agents, it was possible to define the local
agent behavior such that a desired pattern would always emerge, with a formal
proof that this would be reached from any initial configuration.

Simulations in [1] further showed that the swarms indeed always eventually
reached the desired formation by assuming random (but feasible) actions on the

2 M. Coppola and G.C.H.E. de Croon

part of the agents. However, as the agents moved randomly and asynchronously,
even simple patterns with a few agents were found to take hundreds of actions
before completion, and this number appeared to grow exponentially with the size
of the swarm and, in turn, with the complexity of the pattern. This becomes an
issue if the algorithm is to be used on real robots with limited battery life. In this
work, we thus explore how the behavior of the agents can be optimized so that
they do not just “eventually” form the pattern, but do so efficiently. In doing so,
we also explore a novel use of evolutionary algorithms in the context of swarm
intelligence, as we perform an optimization procedure while maintaining the
conditions for the formal proof that the goal will always eventually be achieved.

This paper is organized as follows. In Sect. 2 we review relevant literature and
introduce the context of this research. Then, Sect. 3 summarizes the framework
used to enable the swarm to form a desired pattern. The optimization method-
ology is detailed in Sect. 4, followed by an assessment in Sect. 5. In Sect. 6, we
summarize the findings and discuss future work.

2 Related Work and Research Context

Evolutionary algorithms can search through vast solution spaces and discover
solutions to complex problems, and are thus a popular approach to dealing with
the intricacies of swarm robotics and extracting valid local behaviors [6, 14]. They
have been used for numerous architectures, including: neural networks [3, 11],
state machines [7], behavior trees [12], and grammar rules [5]. When applied to
swarms, the following issues typically arise:

1. As the number of agents grows, the complexity of the solution and the size
of the potential solution space grow [16, 10].

2. The evolutionary algorithm is likely to drift into undesired local optima. This
may happen due to deceptive fitness functions or bootstrap issues [17, 9].

3. As the size of the swarm grows, the iteration time needed to find a solution
grows. This can be due to, for instance:
(a) The computational requirements needed to evaluate the fitness of a con-

troller are higher because of the need to simulate a larger swarm.
(b) Depending on the task, it might take longer for the desired behavior to

emerge, requiring a longer simulation time upon each evaluation trial.
(c) Each controller may have to be simulated multiple times in order to

accurately assess its expected average fitness [18].

In state of the art, the problems above have mostly been tackled in two
ways. First, there are methods that try to deal with the broad solution space. For
example, Gomes et al. [8] used novelty search to encourage a broader exploration
of the solution space. The second way is to use global knowledge and insights to
aid the evolutionary process. For example, Duarte et al. [3] partitioned complex
swarm behavior into simpler sub-behaviors. Hüttenrauch et al. [10], with a focus
on deep reinforcement learning, used global information to guide the learning
process towards a solution. Alternatively, Trianni et al. [18] and Ericksen et al.

Optimization of Swarm Behavior Assisted by an Automatic Local Proof 3

[4] explored whether evolved behaviors for smaller swarms could generalize to
larger swarms.

Evolutionary approaches are thus typically used to establish the behavior
needed to achieve the global goal, but it is not known whether the final behavior
generalizes to all initial conditions. In this work we present the first steps to an
alternate approach towards achieving an optimum swarm behavior: optimizing a
behavior that is formally proven to always eventually lead to the emergent global
goal. In this approach, the proof that the goal will always eventually be achieved
remains preserved throughout. The focus of the optimization procedure is not on
figuring out how to solve the problem, but on how to do it more efficiently while
ensuring that the resulting behavior still guarantees that any initial condition
will always eventually lead to the goal. Using the framework from [1], and limited
agents as introduced therein, we attempt to optimize the local behavior of the
agents in finite pattern formation tasks of increasing complexity. We begin from a
local state-action map given to the agents. This state-action map can be verified
to always eventually lead to the goal, but is not optimized for performance, as any
agent in a given state can select its action randomly from several options, with
equal probability. We then tune this state-action map with the goal of simplifying
the behavior and minimizing the number of actions needed, on average, to achieve
the final pattern when starting from an arbitrary initial configuration. More
specifically, we do the following:

1. Restrict the possible actions that an agent can take when in a given state,
subject to the constraint that it must still be provable that the global goal
will emerge. This minimizes the size of the local state-action map of the
agents, and in turn the size of the possible solution space.

2. We take the minimized state-action map and we apply an evolutionary al-
gorithm to optimize the probability of executing each action.

The desired final outcome is a probabilistic local state-action map that enables
the agents to arrange into the desired pattern most efficiently when starting from
a random initial configuration.

3 Framework and Approach to Pattern Formation

This section summarizes the pattern formation methodology, which can be found
in more detail in [1]. For the sake of brevity, in this work we will assume that the
swarm operates in a grid world and in discrete time. However, as demonstrated in
[1], the behavior can also be used in continuous time and space with asynchronous
agents.

Consider N robots that exist in an unbounded discrete grid world and operate
in discrete time. In the case studied in this paper, each robot Ri can sense the
location of its neighbors in the 8 grid points that surround it, as depicted in
Fig. 1a. This is the local state si of the agent (which is all the information that
it has). The local state space S consists of all combinations of neighbors that it
could sense, such that |S| = 28. At time step k = 0, we assume the swarm begins

4 M. Coppola and G.C.H.E. de Croon

(a) Example local state (b) Possible actions

Fig. 1: Depictions of local state and the actions that an agent can take

in a connected topology forming an arbitrary pattern P0. At each time step, one
random robot in the swarm takes an action, whereby it can move to any of the
8 grid points surrounding it, as depicted in Fig. 1b. This is the action space of
the agents, denoted A. Moreover, if a robot takes an action, then it will not take
an action at the next time step (unless no other robot can take an action).

The goal of the swarm is to rearrange from its initial arbitrary pattern P0

into a desired pattern Pdes. This is achieved using the following principle. The
local states that the agents are in when Pdes is formed are extracted, this forms
a set of local desired states Sdes ∈ S, as depicted by the examples in Fig. 2. If
robot Ri finds itself in any state si ∈ Sdes then it is instructed to not move,
because, from its perspective, the goal has been achieved. In [1], it is shown
that, given a Pdes and the corresponding Sdes, it can be automatically verified
whether the local desired states will uniquely form Pdes, or whether they can
also can give rise to spurious global patterns. In the following, we assume that
set of local desired states has passed this verification. Therefore, until Pdes is
formed, at least one agent will be in a state s 6∈ Sdes and will seek to amend the
situation. The swarm will then keep reshuffling until Pdes forms.

When an agent Ri is in a state si 6∈ Sdes, it can execute an action. From
the state space and action space, we can extract a state-action map Q = (S \
Sdes) × A. However, not all actions should be allowed. The actions that: a)
cause collisions and b) cause local separation of the swarm are eliminated from
Q, because they are not safe. From this, we extract a safe state-action map
Qsafe, where Qsafe ⊆ Q. From this process, there will also emerge some local
states that cannot take any safe actions. An agent in such a state will not be
able to move or else it will either collide with other agents or possibly cause
separation of the swarm. We refer to such states as blocked states. The set of
blocked states is denoted Sblocked. By contrast, there are states where an agent
will be capable of moving away from its neighborhood without issues. We call
these states simplicial. The set of simplicial states is denoted Ssimplicial. Fig. 3
shows examples of blocked states and simplicial states.

Now consider a graph GS = (V,E). Let the nodes of GS be all states that
the agents can be in, such that V = S. The edges of GS are all local transitions
between states. These are all the state transitions that an agent can locally
experience as a result of the changing environment when it, or any other agent
in the swarm, moves. More specifically, GS is the union of three subgraphs:

Optimization of Swarm Behavior Assisted by an Automatic Local Proof 5

4 Agents Triangle Hexagon 9 Agents Triangle

Fig. 2: Set of desired states Sdes for the exemplary patterns treated in this paper,
featuring patterns of increasing complexity and size (from left to right)

(a) (b) (c) (d)

Fig. 3: Examples of: (a) a state s ∈ Sblocked, due to it being surrounded; (b) a
state s ∈ Sblocked, because any motion will cause the swarm to locally disconnect;
(c) a state s ∈ Sactive∩Ssimplicial, because it can travel around all its neighbors;
(d) a state s ∈ Sactive but s 6∈ Ssimplicial, because it can move but it cannot
travel around all its neighbors or else it might disconnect the swarm

G1
S indicates all state transitions that an agent could go through by an action

of its own, based on Qsafe. G2
S indicates all state transitions that an agent

could go through by an action of its neighbors (which could also move out
of view). G3

S indicates all state transitions that an agent could go through if
another agent, previously out of view, were to move into view and become a
new neighbor. Furthermore, let G2r

S be a subgraph of G2
S . G2r

S only indicates the
state transitions in G2

S where a neighbor moves about the central agent, but not
out of view. By analyzing certain properties of these graphs, it can be verified
that the pattern Pdes will eventually form starting from any initial pattern P0.
Specifically, the following conditions need to be met:

1. G1
S ∪G2

S shows that each state in S features a path to each state in Sdes.

6 M. Coppola and G.C.H.E. de Croon

2. For all states s ∈ Sblocked ∩ S¬des, none of the cliques 1 of each state can be
formed uniquely by agents that are in a state s ∈ Sdes ∩ Ssimplicial.

3. G2r
S shows that all static states with two neighbors can directly transition

to an active state.
4. G1

S shows that any agent in state s ∈ Sactive∩Ssimplicial could move around
all its local neighbors (as exemplified in Fig. 3c).

5. G3
S shows that any agent in any state s ∈ Sdes ∪ Sblocked will always, by the

arrival of a new neighbor in an open position, transition into an active agent
(with the exception of any agent that is, or becomes, surrounded).

The motivations behind these conditions can be found in [1]. They are not
repeated here due to page restrictions. However, they essentially ensure that all
agents will keep moving around with sufficient freedom for the swarm to reshuffle
without deadlocks or endless loops until the pattern is achieved. These conditions
are local in nature; they focus on the local perception in an agent’s limited
sensing range and the actions that the agent could take as a result. The advantage
of this is that checking whether the conditions are met is independent of the size
of the swarm, avoiding the combinatorial explosion that would otherwise ensue.
This makes it possible to verify them within a heuristic optimization process.
This proof, combined with the fact that it can deal with very limited agents
(anonymous, homogeneous, memoryless, with limited range sensing, and without
needing any communication, global knowledge, or seed agents) moving in space,
sets the work in [1] apart from other works such as [13, 19, 15].

4 Optimization Methodology

Following the framework in Sect. 3, we can know whether a given pattern Pdes

will eventually form if the agents act based on its corresponding Qsafe. However,
this may take a significant amount of actions, due to the fact that any active
agent could move at any time step and select a random action from its options in
Qsafe. The objective of this article is to minimize the number of actions that the
agents will take, on average, to form Pdes when starting from an arbitrary pattern
P0. In Sect. 4.1 and Sect. 4.2 we take two preliminary steps to automatically, at
the local level, prune Qsafe from unnecessary actions. This will lead us to a new
set Qreduced ⊆ Qsafe which is minimally sufficient to achieve the global goal.
This reduces randomness in the system and restricts the solution space. Then, in
Sect. 4.3, we use an evolutionary algorithm to tune the probability of taking each
action in Qreduced, leading to a final controller. Throughout all steps, measures
will be taken to ensure that the conditions of the proof (as detailed at the end of
Sect. 3) remain respected. We apply this procedure to the patterns from Fig. 2.

1 A clique is a connected set of an agent’s neighbors. Without the central agent, the
agents in each clique would remain connected with each other, but the different
cliques would not be connected.

Optimization of Swarm Behavior Assisted by an Automatic Local Proof 7

4.1 Step 1: A-Priori Local Reduction of Active States

S can be sub-divided in two sets: Sactive, in which agents take an action based on
Qsafe, and Sdes∪Sblocked, in which the agents do not take actions. For simplicity,
the latter is grouped under the umbrella set Sstatic = Sdes∪Sblocked. In this step,
we aim to move states from Sactive to Sstatic. This will reduce the number of
agents in the swarm that are likely to move, decreasing the size of Qsafe.

As explained in Sect. 3, an important axiom needed to guarantee that Pdes

will form is that, for a swarm of N agents, N instances of the local states in
Sstatic, with repetition, must uniquely rearrange into Pdes. If this is not the case,
another pattern could emerge where all agents are in a state Sstatic and do not
move. Here, because we are already at the optimization stage, we consider the
case where the original Sstatic already guarantees that Pdes is unique. From this
starting point, we present a method to augment Sstatic based only on a local
analysis, while keeping Pdes as the unique static pattern.

Consider a state s ∈ Sactive. For s, we locally check whether it could be fully
surrounded by agents with a state within Sstatic. If this is not possible, because
s is such that at least one of its neighbors would be in an active state, then
we add s to Sstatic. This is because we know that, if this state s were static,
there would always be one active agent somewhere next to it anyway, so Pdes

still remains the only unique pattern that can be formed by static states. Then,
when this active neighbor moves, the local state of the agent will also change
and it will also no longer be static. We run this process iteratively for all states
until no more states from Sactive can be moved to Sstatic. As an exception, due
to the importance of active simplicial states remaining active to guarantee that
there is motion in the swarm, these are not included in the process.

Using this approach, it is possible to significantly increase the size of Sstatic,
and in turn reduce the size of Qsafe. Additionally, one can also add to Sstatic all
states that expect more neighbors than are present in the swarm. For instance,
for a swarm of 4 robots, all states with 4 or more neighbors may be discarded,
because they cannot happen in the first place and we need not consider them.
Tab. 1 shows the results of Step 1 for the patterns in Fig. 2.

4.2 Step 2: Local Elimination of Unnecessary Actions

In this step, individual state-action pairs that are not necessary towards achiev-
ing the final pattern, in accordance with the proof, are discarded. The objective is

Table 1: Results of Step 1 on the size of Sstatic (which increases) and Qsafe

(which decreases)
4 Agents Triangle Hexagon 9 Agents Triangle

Before
|Sstatic| 28 30 33
|Qsafe| 543 550 531

After
|Sstatic| 188 128 87
|Qsafe| 172 381 439

8 M. Coppola and G.C.H.E. de Croon

(a) 4 agents triangle (b) Hexagon (c) 9 agents triangle

Fig. 4: Results of the evolutionary reductions of Qsafe from Step 2

to minimize |Qsafe| while keeping the conditions listed at the end of Sect. 3. The
minimization was performed with a Genetic Algorithm (GA) in order to avoid
local minima. The fitness function to be minimized was f = |Qsafe|, subject to
the following constraints:

1. Sstatic must not change. This is because, following Step 1, we know that all
remaining states must be active, else a spurious pattern might form.

2. The conditions at the end of Sect. 3 must be respected.

The population of the GA was formed by 100 binary genomes. Each gene in a
genome represented a state-action pair in Qsafe, with a 1 indicating that the
state-action pair is kept and a 0 indicating that it is eliminated. All genomes
in the initial population were such that the constraints were respected. Then,
the new generation consisted of: elite members (30%), new offspring (40%), and
mutated members (30%). Offspring genomes were the result of an AND operation
between two parent genomes. This automatically meant that any offspring would
be at least as fit as its parents, because the AND operator natively either reduced
or kept the quantity of activated bits. Offspring were only kept if they complied
with the constraints, else the parents were forced to look for new mates to per-
form the AND operation with. This also made for a convenient stopping criterion,
which is when all children are equally as fit as the parents or when all parents
are unable to find any mate that will result in a valid offspring. On each gener-
ation round, mutation was applied to a random portion of the population, for
which the NOT operator was randomly applied to 10% of each selected member’s
genome (thus changing 1s to 0s and viceversa). Similarly as to the offspring, a
mutation was kept only if it returned a genome for which the constraints were
met, else it was discarded and a new mutation was attempted. This way there
was a guarantee that the population always consisted of valid genomes.

We executed 5 evolutionary runs for each pattern from Fig. 2, with similar
results. The results of the runs are shown in Fig. 4. Thanks to the local nature
of the proof, the evolution time was not dependent on the number of agents in
the swarm.

Optimization of Swarm Behavior Assisted by an Automatic Local Proof 9

(a) 4 Agents Triangle (b) Hexagon

Fig. 5: Optimization results of Step 3 from the best evolutionary runs

4.3 Step 3: Behavior Optimization

Steps 1 and 2 lead to reduced state-action maps Qreduced that are minimally
sufficient to guarantee that the patterns will be achieved. In Step 3, we tune the
probability of executing each action in Qreduced. This is done with a more clas-
sical evolutionary robotics approach to swarm robotics: the swarm is simulated
and evaluated based on its statistical performance, and this information is used
in the fitness function of a GA.

The fitness function to be minimized is the expected number of actions needed
to achieve the goal. This was evaluated by the mean over 10 trials. The GA used a
population of 100 scalar genomes. Each gene in a genome held a value 0 < p ≤ 1,
indicating the probability of taking the corresponding action from Qreduced. By
means of the inequality, it is not possible to bring the probability of a state-action
pair down to 0 and deactivate it (keeping the proof intact). Each new generation
was produced by elite members (30%), offspring (40%), and mutated members
(30%), as in Step 2. Offspring resulted from mixing two parent’s genomes via a
uniform crossover strategy, where each gene of an offspring’s genome is randomly
selected from the genes of either parent with equal probability. Mutation was
applied to random genomes, for which 10% of their genes were replaced by ran-
dom values from a uniform distribution. The members of the initial population
were produced randomly from uniform distributions.

Using this scheme, we optimized the behavior for the 4 agents triangle and
the hexagon, running 5 evolutionary runs each. The best evolutionary runs are
shown in Fig. 5. For the triangle, 3 out of 5 runs converged. For the hexagon,
2 out of 5 runs converged, one considerably lower than the other. We associate
the convergence issues to bootstrap and noise issues during evaluation, which
grow with the size of the swarm. In light of this, we were unable to establish an
optimal solution for the triangle with 9 agents. This is due to two problems: 1) the
controllers in early generations took a very long time to evaluate, which made
executing the GA troublesome, 2) the fitness metric was subject to considerable
variance, leading to inaccurate controller evalations. These problems and their
implications are discussed further in Sect. 5.

10 M. Coppola and G.C.H.E. de Croon

(a) 4 Agents Triangle (b) Hexagon (c) 9 Agents Triangle

Fig. 6: Normalized histograms of the performance of the system through all steps
of the optimization

5 Results and Discussion

We tested the performance of the original baseline controller against the per-
formance of the controllers after Step 1, Step 2, and Step 3. Each controller
was tested 100 times. The normalized distributions for the number of actions to
completion are shown in Fig. 6. Exemplary simulations of swarms as they create
a pattern using the evolved behaviors from Step 3 are shown in Fig. 7. In all
tests, the desired pattern was eventually achieved. Reducing the size of Qsafe

in Steps 1 and 2 simplified the state-action map and did not have an impact on
whether the goal could be achieved. This result serves as empirical evidence for
the proofs in [1], which were apt guards to ensure that the swarm could form the
pattern. Then, when the minimized state-action map Qreduced was optimized, we
were able to significantly improve the performance of the system for the triangle
with 4 agents and the hexagon, achieving a fast average performance while also
respecting the proof.

There remain issues to be investigated. The first issue is that Step 1 and 2
only modified Qsafe with the goal to minimize its size and simplify the agent’s
behavior. As seen in Fig. 7, this in itself does not necessarily aid performance. In
future work, there should be efforts to understand how to reduceQsafe while also
improving performance. The second issue is scalability, as encountered in Step
3. Most notably, this prevented us from completing Step 3 for the triangle with
9 agents. It is possible that these problems can be mitigated by improving Steps
1 and 2 to minimize |Qsafe| while also assessing performance. Another option
could be to stop simulations before completion and use a fitness measure that
favors global patterns closer to Pdes over other less similar patterns. However,
it might also be possible that the scalability issue is intrinsic to the system. As
the size of the swarm grows, then the relative information that each agent has of
the whole swarm decreases, and it become increasingly difficult for an agent to
predict whether an action is the best for the good of the whole swarm. It would
be interesting to explore this limitation in future work.

Optimization of Swarm Behavior Assisted by an Automatic Local Proof 11

(a) 4 Agents Triangle

(b) Hexagon

Fig. 7: Exemplary simulations showing pattern formation of the triangle with 4
agents and the hexagon after optimization

6 Conclusion and Future Work

The approach presented in this paper is a first step towards optimizing swarm
behavior of severely limited agents by aid of an automatic proof, where a local
proof allows for the fast verification of certain properties, and can thus be in-
cluded within the optimization process. The focus was not on how to achieve
goal, but on how to achieve it more efficiently. This led to efficient controllers
where the number of actions needed to achieve the patterns were significantly
lower than the original controllers, making them more suitable for use in the real
world. In the meanwhile, the controllers remained such that eventual success by
the swarm is guaranteed.

The approach encountered problems with scalability in the final step. This
could be tackled by using the automatic minimization steps, prior to the final
optimization, to reduce the solution space in a way that is more favorable for
performance. However, there remains the issue that, as the size of the swarm
grows, each agent becomes less empowered to take an optimal action, given that
it has relatively less information on the state of the swarm. For this reason, it
would also be valuable to explore how scalability improves when the agents have
more information of their surroundings (e.g., they can sense further away), or
some limitations are lifted (e.g. memory).

12 M. Coppola and G.C.H.E. de Croon

Bibliography

[1] Coppola, M., Guo, J., Gill, E.K., de Croon, G.C.H.E.: Provable emer-
gent pattern formation by a swarm of anonymous, homogeneous, non-
communicating, reactive robots with limited relative sensing and no global
knowledge or positioning. ArXiv Preprint arXiv:1804.06827(Submitted to
Swarm Intelligence, Springer) (2018)

[2] Coppola, M., McGuire, K.N., Scheper, K.Y.W., de Croon, G.C.H.E.: On-
board communication-based relative localization for collision avoidance in
micro air vehicle teams. Autonomous Robots (2018)

[3] Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M.,
Christensen, A.L.: Evolution of collective behaviors for a real swarm of
aquatic surface robots. PloS one 11(3), e0151834 (2016)

[4] Ericksen, J., Moses, M., Forrest, S.: Automatically evolving a general con-
troller for robot swarms. In: 2017 IEEE Symposium Series on Computa-
tional Intelligence (SSCI). pp. 1–8 (2017)

[5] Ferrante, E., Duéñez Guzmán, E., Turgut, A.E., Wenseleers, T.: Geswarm:
Grammatical evolution for the automatic synthesis of collective behaviors in
swarm robotics. In: Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation. pp. 17–24. GECCO ’13, ACM, New York,
NY, USA (2013)

[6] Francesca, G., Birattari, M.: Automatic design of robot swarms: Achieve-
ments and challenges. Frontiers in Robotics and AI 3, 29 (2016)

[7] Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R.,
Podevijn, G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia,
F., Trianni, V., Birattari, M.: Automode-chocolate: automatic design of
control software for robot swarms. Swarm Intelligence 9(2), 125–152 (Sep
2015)

[8] Gomes, J., Urbano, P., Christensen, A.L.: Introducing novelty search in evo-
lutionary swarm robotics. In: Dorigo, M., Birattari, M., Blum, C., Chris-
tensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) Swarm Intelli-
gence. ANTS 2012. pp. 85–96. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2012)

[9] Gomes, J., Urbano, P., Christensen, A.L.: Evolution of swarm robotics sys-
tems with novelty search. Swarm Intelligence 7(2), 115–144 (2013)

[10] Hüttenrauch, M., Šošić, A., Neumann, G.: Guided deep reinforcement learn-
ing for swarm systems. ArXiv Preprint (2017), arXiv:1709.06011

[11] Izzo, D., Simões, L.F., de Croon, G.C.H.E.: An evolutionary robotics ap-
proach for the distributed control of satellite formations. Evolutionary In-
telligence 7(2), 107–118 (2014)

[12] Jones, S., Studley, M., Hauert, S., Winfield, A.: Evolving behaviour trees
for swarm robotics. Distributed Autonomous Robotic Systems: The 13th
International Symposium. Springer Proceedings in advanced Robotics. pp.
487–501 (2018)

[13] Klavins, E.: Programmable self-assembly. IEEE Control Systems 27(4), 43–
56 (Aug 2007)

Optimization of Swarm Behavior Assisted by an Automatic Local Proof 13

[14] Nolfi, S.: Power and the limits of reactive agents. Neurocomputing 42(1–4),
119 – 145 (2002)

[15] Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014)

[16] Saska, M., Vonásek, V., Chudoba, J., Thomas, J., Loianno, G., Kumar, V.:
Swarm distribution and deployment for cooperative surveillance by micro-
aerial vehicles. Journal of Intelligent & Robotic Systems 84(1), 469–492
(Dec 2016)

[17] Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open
issues in evolutionary robotics. Evol. Comput. 24(2), 205–236 (Jun 2016)

[18] Trianni, V., Nolfi, S., Dorigo, M.: Cooperative hole avoidance in a swarm-
bot. Robotics and Autonomous Systems 54(2), 97 – 103 (2006)

[19] Yamins, D., Nagpal, R.: Automated global-to-local programming in 1-d spa-
tial multi-agent systems. In: Proceedings of the 7th International Joint Con-
ference on Autonomous Agents and Multiagent Systems - Volume 2. pp.
615–622. AAMAS ’08, International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC (2008)

	Optimization of Swarm Behavior Assisted by an Automatic Local Proof for a Pattern Formation Task

