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Abstract.—The traditional classification method based on supervised learning classifies remote 

sensing (RS) images by using sufficient labeled samples. However, the number of labeled samples 

is limited due to the expensive and time-consuming collection. To effectively utilize the information 

of unlabeled samples in the learning process, this paper proposes a novel semi-supervised 

classification method based on class certainty of samples (CCS). First, the class certainty of 

unlabeled samples obtained based on multi-class SVM is smoothed for robustness. Then, a new semi-

supervised linear discriminant analysis (LDA) is presented based on class certainty, which improves 

the separability of samples in the projection subspace. Ultimately, we extend the semi-supervised 

LDA to nonlinear dimensional reduction by combining class certainty and kernel methods. 

Furthermore, to assess the effectiveness of proposed method, the nearest neighbor classifier is 

adopted to classify actual SAR images. The results demonstrate that the proposed method can 

effectively exploit the information of unlabeled samples and greatly improve the classification effect 

compared with other state-of-the-art approaches. 

Keywords: remote sensing images; semi-supervised classification; class certainty; semi-supervised 

LDA; kernel method 

1 Introduction 

With the rapid development of the remote sensing (RS) technology, the higher-resolution and more 

informative RS images are acquired. Due to the classification ability under certain conditions, RS images 

has been widely applied to areas such as target surveillance, disaster relief, environmental protection and 

etc[1,2]. However, it’s difficult to achieve accurate classification of RS images, which has become one 

of research hotspots[3].  

The traditional RS images classification technologies are mainly based on unsupervised learning 

[4]and supervised learning [5]. Unsupervised methods cluster the similar samples together by exploiting 

the characteristic distribution of samples. Since prior knowledge is not required, unsupervised learning 

methods are easy to implement. However, since such methods only consider the characteristic difference 

among samples and lack the effective guidance of label information, the classification performance is 

not idea normally. To overcome the aforementioned disadvantage, the supervised methods are adopted 

to quickly capture the label information by learning the mapping function between the features and labels 

of training data[6]. The classification performance of supervised methods are significantly improved with 

sufficient labeled samples. Nevertheless, the sample labeling for RS images is time-consuming, and the 

robustness of the classifier is worse when the labelled samples are insufficient [7]. But unlabeled samples 

can be generated in a relatively easier way and their rich characteristic information is helpful for 

improving the classification performance[8]. Semi-supervised learning can automatically exploits 

unlabeled samples to improve the learning performance based on labeled samples.  

Generally, it’s believed that the first semi-supervised method is proposed by Shahshahani and 

Landgrebe in 1994 [9]. Ever since, many semi-supervised learning methods has been presented, such as 
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generative mode, semi-supervised SVM [10], graph-based model [11], self-training model and co-

learning model [12]. For the semi-supervised algorithms, unlabeled samples are used to enlarge initial 

labeled samples set and make the classification surface pass through the space with sparse samples. In 

[13], the transductive support vector machine(TSVM) is developed to search the optimal classification 

surface based on margin maximization by iteratively assigning the sample positive label or negative one. 

Persello and Bruzzone present a progressive semi-supervised SVM with diversity (PS3VM-D) to make 

candidate samples within and closer to the margin band [14]. Then, samples are incrementally selected 

among the candidates considering the kernel cosine-angular similarity. Based on co-training model, Zhou 

designed a tri-training algorithm by training three classifiers. Then, reliable unlabeled samples are 

selected by one classifier and added to the labeled samples set of the other two classifiers in an iterative 

way [15]. Although the aforementioned algorithms are proved to be effective experimentally, semi-

supervised learning methods are not always helpful because of the strict requirements of data distribution, 

selection method and labeling method for unlabeled samples.  

To effectively improve RS images classification performance, this paper proposes a novel semi-

supervised classification method by utilizing unlabeled samples based on class certainty of samples 

(CCS). Different from other semi-supervised algorithms, CCS initially assigns the class certainty to 

unlabeled samples and integrates it to the scatter matrixes of linear discriminant analysis (LDA). The 

new scatter matrixes can effectively describe the true characteristic distribution, which makes samples 

more separable in the projection subspace. Since the class certainty is used to measure the class reliability 

of samples, the unlabeled samples with high reliability play a more important role than those with low 

reliability in CCS. To ensure the sufficient class reliability of unlabeled samples in the subsequent semi-

supervised process, the class certainty is smoothed through normalization and threshold considering the 

complicated distribution of samples. As a result, the performance of CCS is greatly improved.  

The rest of this paper is organized as follows. Section 2 describes the proposed method in detail. 

The experiments for the SAR targets classification are provided in Section 3 and the conclusions are 

drawn in Section 4. 

2 Proposed Method 

In this part, we first present the related definition. The training samples [ , ] d NR  X L U are 

divided into two parts according to the label of samples. Let 1 2[ , , , ] Rd l

l

 L x x x be the feature 

matrix of labeled samples with label vector 1 2[ , , , ]ly y y , {1,2 , }iy k  and 

1 2[ , , , ] Rd u

l l l u



   U x x x  be the feature matrix of unlabeled samples. N l u  denotes the 

number of training samples and the test set is T . Then, as shown in Fig 1, the proposed novel semi-

supervised method (CCS) consists of four main ingredients. 

 



 
Fig 1. Flowchart of the proposed method CCS. 

2.1 Getting the class certainty of unlabeled samples 

Dimension reduction of Training data 

In Fig 1, the inputs of CCS are the original RS training data L and U in high-dimension. To get the 

class certainty information quickly, the computational complexity and the dimension of training data 

should be reduced. Thus, based on KLDA algorithm, the projection characteristics 1L and 1U are obtained. 

Computing the class certainty based on multi-class SVM 

The output of SVM can effectively measure the class certainty of samples. After the dimension 

reduction, SVM can be trained based on the labeled samples 1
L . Because the samples are generally multi-

class, we construct multi-class SVM based on the “one-against-one” approach. To express more clearly, 

an example of constructing multi-class SVM and getting the class m certainty of unlabeled samples is 

shown in Fig 2. 
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Fig 2. Constructing the multi-class SVM and getting the class m certainty of unlabeled samples. 

1

m
L denotes labeled samples of class m with reduced dimension. 

Let 1

m
L  and samples of the other classes be positive labels and negative labels, respectively. Then, 

after training k-1 binary SVM between 1

m
L and other classes of samples, the corresponding output vector 

is derived by passing 1U  to every binary SVM. For example:
, -1

1( ( ) )m m T T f w U b
 

denotes the 

output vector of the SVM trained by 1

m
L and

1

1

m
L . Obviously, different output vectors can be obtained 

in this way. To get the class m certainty
m

Uf , the output vectors are added based on the idea of voting 

method. Similarly, other class certainty , 1,2 , ,i k i m i
f

 
can be obtained according to the 

corresponding implementation. 

2.2 Smooth processing of the class certainty 

Normalization and threshold processing 

Since the class i certainty
i ( {1,2 , })U i kf contains elements ranged from less than 0 to larger 

than 1, they should be normalized and threshold processed before utilizing. Accordingly, min-max 

standard method is applied for analysis, which can be written as 

 
min

{1,2 , }
max min

i

i U

U i k


 


f
p ，                            (1) 

where
i

Up represents the class i certainty of U after normalization processing. Then, we choose threshold 

[0,1]t . If the element of
i

Up is less than t, we set it to 0. 

 
,

,

,

0,
, {1,2 , }, {1,2 }

,others

i

U ji

U j i

U j

i k j u
 

  


p t
p

p
                  (2) 

where ,

i

U jp denotes the j-th element of vector
i

Up . The greater threshold t means higher reliability 

requirement for the utilized unlabeled samples.  

Merge the class certainty of labeled samples 

Assuming that , {1,2 , }i i kL is the original labeled sample set of class i. It’s obvious that the 

corresponding class i certainty is 1 and the other class certainty is 0. Thus, the class i certainty vector
i

Lp

of L can be derived as 

javascript:void(0);
javascript:void(0);


 ,

1,
, {1,2 , }, {1,2 }

0,

ji

L j

j

y i
i k j l

y i


  



p                      (3) 

where
,

i

L jp  and jy  denote the j-th element of vector
i

Lp and the label of sample jx , respectively.  By 

combining
i

Lp and
i

Up , the class i certainty vector of training data [ , ]X L U  is obtained: 

 [ , ], {1,2 , }i i i

L U i k p p p                              (4) 

2.3 New semi-supervised LDA 

Semi-supervised LDA 

In this section, we propose a novel semi-supervised LDA method by integrating class certainty into 

the scatter matrixes so that the samples are more separable in the projection subspace. To derive the new 

scatter matrixes, the within-class mean vector iu and the total mean vector u  are defined as: 
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Where
i

jp is the element of vector
i

p . 

Next, to obtain the “generalized Rayleigh quotient” of semi-supervised LDA, the new between-

class scatter matrix b
S , within-class scatter matrix wS and total-class scatter matrix matrixes t

S  are 

defined as  
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where 
1

N
i

j

j

n

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where
1N

j R h
 

is expressed as: 



 
,

1,

0,
j i

i j
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
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

h                                    (9) 

where i denotes the element subscript of vector jh .   

According to Eq.(6),(7) and (8) , the main difference between our method and supervised LDA is 

that the definition of in
 

for b
S is changed and the weight 

i

jp
 

is added to wS and t
S .The higher 

class i certainty of sample jx  means larger
 

i

jp  and greater impact on the scatter matrixes. On the 

contrary, a smaller
i

jp  means less impact on the scatter matrixes. This method effectively exploits the 

characteristic information of unlabeled samples and significantly reduces the impact of wrong classified 

samples. Thus, the scatter matrixes shows more accurate distribution of samples. 

Since the new scatter matrixes have been proven to satisfy t b w S S S , any two scatter matrixes 

can be utilized to construct the “generalized Rayleigh quotient”. Generally, it is expressed in the 

following criterion as 

 max
T

b

T

w
w

w S w

w S w
                                    (10) 

Where
( 1)d kR  w is the projection matrix. Then, w can be calculated by 

 b wS w S w                                     (11) 

The closed-form solution of w related to k-1 characteristic vectors of
-1

w bS S . 

Kernel semi-supervised LDA 

The above proposed semi-supervised LDA is a linear dimensional reduction method. In this part, it 

is extended to the nonlinear range by taking advantage of the kernel method. Firstly, the samples are 

mapped to the higher space: ( ) F X X . By combining Eq. (6), (7) and (10), the new kernel 

objection function is derived as: 

 
( ) ( )

max
( ) ( )

T T

T T

 

 

b

w
w

w X S X w

w X S X w
                             (12) 

According to the relevant theory of the reproducing kernel Hilbert space, any solution w  of (12) 

exists in the subspace expanded by all training samples. But when the labeled samples is insufficient, 

some unlabeled samples around the classification surface of SVM have small class certainty. To reduce 

the influence of these unlabeled samples, w is denoted by: 

 
1

( ) ( ) ( )
N

j j j

j

diag


   s s
w a p X X p a                        (13) 

where 
1

k
s i

i

p P  comprehensively measures the reliability of training samples and a is a vector. 

When the sample , {1,2 , }j j Nx  is near the surface of SVM, 
s

jp  is relatively small. That is, the 

impact of jx in kernel process can be ignored, which ensures the stability of the kernel semi-supervised 

LDA method. 

Then the new kernel object function based on (12), (13) can be obtained as follows: 

( ) ( ) ( ) ( ) ( ) ( )
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( ) ( )

( ) ( )
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   
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



b

w

b

w

a p X X S X X p a

a p X X S X X p a

a p KS K p a

a p KS K p a

             (14) 

where ( ) ( )T K = X X  represents the kernel matrix. Then a  can be calculated by (11), and w  can 

be obtained according to (13).  



2.4 Classification 

When reducing the dimension of test data, we can select semi-supervised LDA or kernel semi-

supervised LDA based on whether the data condition is linear. After the dimension reduction, the test 

data will be classified. There are several classifiers to be selected, such as SVM, random forest, nearest 

neighbor classifier (NNC) and so on. We adopts the NNC in this part because the training samples of the 

same class in the projection subspace are very close, which makes the mean vectors fully represent the 

characteristic information of every class. The mean vectors iu after dimension reduction can be expressed 

as 

 i , {1,2 , }T

i i k u w u                              (15) 

Then the class of test sample is determined by the nearest iu . Clearly, because of its simplicity and 

strong feasibility, NNC is exactly suitable for the specialty of data in the projection subspace. 

3 Experiment 

In this section, the performance of the proposed method is investigated on the Moving and 

Stationary Target Acquisition and Recognition (MSTAR) database. The discussion of CCS is performed 

initially to demonstrate the feasibility of CCS-related steps. Subsequently, the effectiveness of the 

proposed method is verified by comparing CCS with other semi-supervised algorithms. As shown in Fig 

3, we choose BMP2 (sn-c21), T72 (sn-132) and BTR70 (sn-c21) as the training data in the following 

experiments. Meanwhile, we select BMP2 (sn-c9566), T72 (sn-s7) and BTR70 (sn-c70) as the testing 

data. Table 1 lists the number of vehicles in the aforementioned data sets.  

 
Fig 3. The SAR images of three classes of vehicles. (a) T72, (b) BMP2, and(c) BTR70 

Table 1. Types and quantities of training data and testing data. 

  Training data Testing data 

Type T72 BMP2 BTR70 T72 BMP2 BTR70 

(model) sn_132 sn_c21 sn_c71 sn_s7 sn_9566 sn_c70 

Quantity 232 232 232 191 191 191 

3.1 Discussion of CCS 

When deriving the class certainty of unlabeled samples, we utilize KLDA to reduce the dimension 

of training data. To verify the superiority of KLDA, we compare it with KPCA, which is a widely used 

unsupervised dimension reduction method [16]. The influence of the two methods on CCS performance 

are comparatively analyzed. As the percentage of the labeled sample changes, the overall accuracy (OA) 

trend chart of different methods is shown in Fig 4. Obviously, the KLDA-CCS possesses higher 

classification accuracy than KPCA-CCS. The reason is that KLDA not only absorbs the spectrum 

information of samples, but also further absorbs the label information, leading to better sample 

characterization ability than KPCA.  
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Fig 4. Classification performance of CCS with different dimension reduction method. KLDA-

CCS and KPCA-CCS represent the CCS using KLDA and KPCA respectively. 

To demonstrate the effectiveness of semi-supervised LDA, we compare it with LDA which just 

utilizes labeled samples. As shown in Fig 5 (a), since test-BMP is closest to the mean vector of T72 

samples, the classification result is mistaken. Different from LDA, semi-supervised LDA can represent 

the truer feature distribution of samples by absorbing the characteristic information of unlabeled samples. 

Meanwhile, different classes of samples are more separable and the test sample is closer to the right mean 

vector. As presented in Fig 5 (b), the test-BMP is obviously closest to the u-BMP and is correctly 

classified into BMP. 

 
Fig 5. The dimension feature of three classes of labeled vehicles samples in LDA and semi-

supervised LDA. test-BMP represents a testing sample selected from the BMP vehicles, and u-BMP,u-

BTR,u-T72 denote the class mean vector and the direction of arrow represents the class judgment result 

of the test-BMP. 

3.2 Comparison with other semi-supervised algorithms 

In this section, we compare the performance of our method with that of the label propagation(LP) 

[17], progressive semi-supervised SVM with diversity(PS3VM-D) [14],constrained KMeans(C- 

KMeans) [18]and semi-supervised discriminant analysis(SDA) [19]. As the percentage of labeled 

samples changes, the OA trend chart of different methods can be derived, as shown in Fig 6. 
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Fig 6. Classification performance of CCS and the other four semi-supervised algorithms. 

Obviously, CCS outperforms the other four semi-supervised algorithms by at least 8% accuracy 

when the labelled samples are insufficient. Generally, LP and PS3VM-D assign pseudo labels to 

unlabeled samples. However, the wrong pseudo labels will cause a bad influence on subsequent classifier 

training process. In terms of the C-KMeans, it can’t make full use the spectrum information by adding 

constraints, which leads to little performance improvement. As for SDA, it focuses on maintaining the 

neighborhood relationship between samples, but has a high requirement of data distribution. Compared 

with the aforementioned four methods, CCS not only utilizes the class information of labeled samples, 

but also reliably absorbs the characteristic information of unlabeled samples through integrating the class 

certainty of samples into LDA, which makes the classification performance more stable and accurate.  

4 Conclusion 

To effectively solve the problem of RS images classification when labeled samples are insufficient, 

this paper proposes a novel semi-supervised classification method (CCS). There are three major findings: 

(a) Based on the dimensional reduction of training samples and multi-class SVM based learning, 

the class certainty information is obtained and assigned to unlabeled samples for further processing. 

(b) For the unlabeled samples, the pre-processed class certainty respectively reassigns the weight 

for reliable data and unreliable ones by normalizing and threshold processing. 

(c) By combining class certainty and kernel method, the semi-supervised LDA is extended to 

nonlinear dimensional reduction. The proposed LDA can make full use of class information of labeled 

samples while characterizing reliably unlabeled samples.  

From the experiment results, we observe that the CCS significantly improves the classification 

accuracy of RS images especially when the labeled samples are insufficient. 
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