Skip to main content

Manifold-Regularized Adaptive Lasso

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Included in the following conference series:

  • 2477 Accesses

Abstract

Adaptive Lasso preserves oracle properties comparing to classical Lasso. It performs as well as if the true underlying model is provided in advance. In order to let feature subset selected by Adaptive Lasso preserve more local information, which is discriminative and benefit for classification, Manifold-regularized Adaptive Lasso (MrALasso) is proposed for feature selection. Reconstructing response by linear sum of features is considered in manifold embedded in high-dimensional space. A similarity graph of data points is built. Connected points are restricted to stay together as close as possible so that the intrinsic geometry of the data and the local structure are preserved. An effective iterative algorithm, with detailed proof of convergence, is proposed to solve the optimization problem. Experimental results of feature selection on several classical gene datasets show the effectiveness and superiority of the proposed method.

B. Luo—This work was supported in part by National Natural Science Foundation of China under Grant 61472002, 61572030 and 61671018, and Collegiate Natural Science Fund of Anhui Province under Grant KJ2017A014.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon, U., Barkai, N.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  2. Antoniadis, A., Lambertlacroix, S., Leblanc, F.: Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics 19(5), 563–570 (2003)

    Article  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  4. Chen, X., Xu, Y.: Discriminative feature selection for multiple ocular diseases classification by sparse induced graph regularized group Lasso. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 11–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_2

    Chapter  Google Scholar 

  5. Ding, C.H.Q., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 3(2), 185–206 (2005)

    Article  Google Scholar 

  6. Feng, W., Huang, W., Ren, J.: Class imbalance ensemble learning based on the margin theory. Appl. Sci. 8(5), 815 (2018)

    Article  Google Scholar 

  7. Golub, T.R., Slonim, D.K., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  8. Gui, J., Sun, Z., Ji, S., Tao, D., Tan, T.: Feature selection based on structured sparsity: a comprehensive study. IEEE T-NNLS 28(7), 1490–1507 (2017)

    MathSciNet  Google Scholar 

  9. Han, J., Zhang, D., et al.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE TGRS 53(6), 3325–3337 (2015)

    Google Scholar 

  10. Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., Wu, F.: Background prior-based salient object detection via deep reconstruction residual. IEEE T-CSVT 25(8), 1309–1321 (2015)

    Google Scholar 

  11. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  12. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  Google Scholar 

  13. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57868-4_57

    Chapter  Google Scholar 

  14. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE TPAMI 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  15. Raileanu, L.E., Stoffel, K.: Theoretical comparison between the gini index and information gain criteria. Ann. Math. Artif. Intell. 41(1), 77–93 (2004)

    Article  MathSciNet  Google Scholar 

  16. Roweis, S., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  17. Sun, G., Ma, P., Ren, J., Zhang, A., Jia, X.: A stability constrained adaptive alpha for gravitational search algorithm. Knowl.-Based Syst. 139, 200–213 (2018)

    Article  Google Scholar 

  18. Tenenbaum, J.B., De Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  19. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Wang, Z., Ren, J., et al.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018)

    Article  Google Scholar 

  21. Yan, Y., Ren, J., et al.: Unsupervised image saliency detection with gestalt-laws guided optimization and visual attention based refinement. Pattern Recogn. 79, 65–78 (2018)

    Article  Google Scholar 

  22. Zhang, A., Sun, G., Ren, J., Li, X., Wang, Z., Jia, X.: A dynamic neighborhood learning-based gravitational search algorithm. IEEE Trans. Cybern. 48(1), 436–447 (2018)

    Article  Google Scholar 

  23. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

  24. Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Bao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, SB., Zhang, YM., Luo, B. (2018). Manifold-Regularized Adaptive Lasso. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics