Skip to main content

The Simulation of Non-Gaussian Scattering on Rough Sea Surface

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Included in the following conference series:

  • 2441 Accesses

Abstract

The simulation of a non-Gaussian scattering on rough surface based on local curvature approximation (NG-LCA) model is presented. The comparison between the NRCS result of LCA and the QuikSCAT scatterometer data shows that NG-LCA model can well explain the scattering way of the Upwind/downwind asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voronovich, A.G.: Wave Scattering from Rough Surfaces, vol. 17. Springer, Heidelberg (2013). no. 1

    MATH  Google Scholar 

  2. Elfouhaily, T.M., Guérin, C.A.: A critical survey of approximate scattering wave theories from random rough surfaces. Waves Random Med. 14(4), R1–R40 (2004)

    Article  MathSciNet  Google Scholar 

  3. Guoxing, G., Zhenzhan, W., et al.: Study of non-Gaussian scattering characteristic based on FDTD algorithm for rough sea surface, In: 4th IEEE Conference on Industrial Electronics and Applications, pp. 1477–1482. IEEE (2009)

    Google Scholar 

  4. Chen, K.S., Fung, A.K., et al.: A backscattering model for ocean surface. IEEE Trans. Geosci. Remote Sens. 30(4), 811–817 (1992)

    Article  Google Scholar 

  5. Fung, A.K., Chen, K.S., et al.: Microwave Scattering and Emission Models for User. Artech House, Norwood (2010)

    Google Scholar 

  6. Quilfen, Y., Chapron, B., et al.: Global ERS 1 and 2 and NSCAT observations: upwind/crosswind and upwind/downwind measurements. J. Geophys. Res. Oceans 104(C5), 11459–11469 (1999)

    Article  Google Scholar 

  7. Guan, C.L., Sun, F.: Fourth order statistic distribution of the non-linearity height wave. Sci. China (D Compile) 27(4), 501–508 (1997)

    Google Scholar 

  8. McDaniel, S.T.: Microwave backscatter from non-Gaussian seas. IEEE Trans. Geosci. Remote Sens. 41(1), 52–58 (2003)

    Article  Google Scholar 

  9. Liu, Y., Yan, X.H., et al.: The probability density function of ocean surface slopes and its effects on radar backscatter. J. Phys. Oceanogr. 27(5), 782–797 (1997)

    Article  Google Scholar 

  10. Xu, D.L.: Theory on Statistic Ocean Wave. High Education Press, Beijing (2001)

    Google Scholar 

  11. Bourlier, C.: Azimuthal harmonic coefficients of the microwave backscattering from a non-Gaussian ocean surface with the first-order SSA model. IEEE Trans. Geosci. Remote Sens. 42(11), 2600–2611 (2004)

    Article  Google Scholar 

  12. Cox, C., Munk, W.: Statistics of the seasurface derived from sun glitter. J. Mar. Res. 17(2), 198–227 (1954)

    Google Scholar 

  13. Thompson, D.R.: Local and non-local curvature approximation: a new asymptotic theory for wave scattering. Waves Random Med. 13(4), 321–337 (2003)

    Article  MathSciNet  Google Scholar 

  14. Bourlier, C., Pinel, N.: Numerical implementation of local unified models for backscattering from random rough sea surfaces. Waves Random Complex Med. 19(3), 455–479 (2009)

    Article  Google Scholar 

  15. Mouche, A., Chapron, B., et al.: Importance of the sea surface curvature to interpret the normalized radar cross section. J. Geophys. Res. Oceans 112(C10), 12 (2007)

    Article  Google Scholar 

  16. Stoffelen, A., Anderson, D.: Scatterometer data interpretation: measurement space and inversion. J. Atmos. Ocean. Technol. 14(6), 1298–1313 (1997)

    Article  Google Scholar 

  17. Wu, J.: Mean square slopes of the wind-disturbed water surface, their magnitude, directionality, and composition. Radio Sci. 25(1), 37–48 (1990)

    Article  Google Scholar 

  18. Bourlier, C., Saillard, J., et al.: Intrinsic infrared radiation of the sea surface. J. Electromagn. Waves Appl. 14(4), 551–561 (2000)

    Article  Google Scholar 

  19. Elfouhaily, T., Chapron, B., et al.: A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. Oceans 102(C7), 15781–15796 (1997)

    Article  Google Scholar 

  20. Hwang, B., Wilkinson, J., et al.: Winter-to-summer transition of Arctic sea ice breakup and floe size distribution in the Beaufort Sea. Elem. Sci. Anth. 5, 40 (2017)

    Article  Google Scholar 

  21. Ren, J., Hwang, B., et al.: Effective SAR sea ice image segmentation and touch floe separation using a combined multi-stage approach. In: 2015 IEEE International Geoscience and Remote Sensing Symposium, IGARSS, pp. 1040–1043. IEEE (2015)

    Google Scholar 

  22. Yan, Y., Ren, J., et al.: Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recogn. 49, 65–78 (2018)

    Article  Google Scholar 

  23. Hwang, B., Ren, J., et al.: A practical algorithm for the retrieval of floe size distribution of Arctic sea ice from high-resolution satellite synthetic aperture radar imagery. Elem. Sci. Anth. 5, 38 (2017)

    Article  Google Scholar 

  24. Polak, A., Ren, J., et al.: Remote oil spill detection and monitoring beneath sea ICE. In: The 2016 European Space Agency Living Planet Symposium (2016)

    Google Scholar 

  25. Ijitona, T.B., Ren, J., et al.: SAR sea ice image segmentation using watershed with intensity-based region merging, In: 2014 IEEE International Conference on Computer and Information Technology, CIT, pp. 168–172. IEEE (2014)

    Google Scholar 

  26. Cao, F., Yang, Z., Ren, J., et al.: Sparse representation-based augmented multinomial logistic extreme learning machine with weighted composite features for spectral-spatial classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 1, 1–17 (2018)

    Google Scholar 

  27. Wang, Z., Ren, J., Zhang, D., et al.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 1, 68–83 (2018)

    Article  Google Scholar 

  28. Qiao, T., Ren, J., Wang, Z., et al.: Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis. IEEE Trans. Geosci. Remote Sens. 55(1), 119–133 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxing Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, L., Gao, G. (2018). The Simulation of Non-Gaussian Scattering on Rough Sea Surface. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_82

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics