
QA4IE: A Question Answering based Framework
for Information Extraction

Lin Qiu1, Hao Zhou1, Yanru Qu1, Weinan Zhang1, Suoheng Li2,
Shu Rong2, Dongyu Ru1, Lihua Qian1, Kewei Tu3, and Yong Yu1

1 Shanghai Jiao Tong University
{lqiu, kevinqu, maxru, qianlihua, yyu}@apex.sjtu.edu.cn

{zhou1998, wnzhang}@sjtu.edu.cn
2 Yitu Tech

{suoheng.li, shu.rong}@yitu-inc.com
3 ShanghaiTech University

tukw@shanghaitech.edu.cn

Abstract. Information Extraction (IE) refers to automatically extracting struc-
tured relation tuples from unstructured texts. Common IE solutions, including
Relation Extraction (RE) and open IE systems, can hardly handle cross-sentence
tuples, and are severely restricted by limited relation types as well as informal
relation specifications (e.g., free-text based relation tuples). In order to overcome
these weaknesses, we propose a novel IE framework named QA4IE, which
leverages the flexible question answering (QA) approaches to produce high
quality relation triples across sentences. Based on the framework, we develop a
large IE benchmark with high quality human evaluation. This benchmark contains
293K documents, 2M golden relation triples, and 636 relation types. We compare
our system with some IE baselines on our benchmark and the results show that
our system achieves great improvements.

1 Introduction and Background

Information Extraction (IE), which refers to extracting structured information (i.e.,
relation tuples) from unstructured text, is the key problem in making use of large-
scale texts. High quality extracted relation tuples can be used in various downstream
applications such as Knowledge Base Population [16], Knowledge Graph Acquisition
[22], and Natural Language Understanding. However, existing IE systems still cannot
produce high-quality relation tuples to effectively support downstream applications.

1.1 Previous IE Systems

Most of previous IE systems can be divided into Relation Extraction (RE) based systems
[27,51] and Open IE systems [3,8,36].

Early work on RE decomposes the problem into Named Entity Recognition (NER)
and relation classification. With the recent development of neural networks (NN),
NN based NER models [18,26] and relation classification models [48] show better
performance than previous handcrafted feature based methods. The recently proposed

ar
X

iv
:1

80
4.

03
39

6v
2

 [
cs

.I
R

]
 2

8
Ja

n
20

19

2 L. Qiu et al.

RE systems [33,52] try to jointly perform entity recognition and relation extraction to
improve the performance. One limitation of existing RE benchmarks, e.g., NYT [34],
Wiki-KBP [23] and BioInfer [31], is that they only involve 24, 19 and 94 relation types
respectively comparing with thousands of relation types in knowledge bases such as
DBpedia [4,6]. Besides, existing RE systems can only extract relation tuples from a
single sentence while the cross-sentence information is ignored. Therefore, existing RE
based systems are not powerful enough to support downstream applications in terms of
performance or scalability.

On the other hand, early work on Open IE is mainly based on bootstrapping and
pattern learning methods [2]. Recent work incorporates lexical features and sentence
parsing results to automatically build a large number of pattern templates, based
on which the systems can extract relation tuples from an input sentence [3,8,36].
An obvious weakness is that the extracted relations are formed by free texts which
means they may be polysemous or synonymous and thus cannot be directly used
without disambiguation and aggregation. The extracted free-text relations also bring
extra manual evaluation cost, and how to automatically evaluate different Open IE
systems fairly is an open problem. Stanovsky and Dagan [41] try to solve this problem
by creating an Open IE benchmark with the help of QA-SRL annotations [10].
Nevertheless, the benchmark only involves 10K golden relation tuples. Hence, Open IE
in its current form cannot provide a satisfactory solution to high-quality IE that supports
downstream applications.

There are some recently proposed IE approaches which try to incorporate Question
Answering (QA) techniques into IE. Levy et al. [21] propose to reduce the RE problem
to answering simple reading comprehension questions. They build a question template
for each relation type, and by asking questions with a relevant sentence and the first
entity given, they can obtain relation triples from the sentence corresponding to the
relation type and the first entity. Roth et al. [35] further improve the model performance
on a similar problem setting. However, these approaches focus on sentence level
relation argument extractions and do not provide a full-stack solution to general IE. In
particular, they do not provide a solution to extract the first entity and its corresponding
relation types before applying QA. Besides, sentence level relation extraction ignores
the information across sentences such as coreference and inference between sentences,
which greatly reduces the information extracted from the documents.

1.2 QA4IE Framework

To overcome the above weaknesses of existing IE systems, we propose a novel
IE framework named QA4IE to perform document level general IE with the help
of state-of-the-art approaches in Question Answering (QA) and Machine Reading
Comprehension (MRC) area.

The input of QA4IE is a document D with an existing knowledge base K and
the output is a set of relation triples R = {ei, rij , ej} in D where ei and ej are two
individual entities and rij is their relation. We ignore the adverbials and only consider
the entity pairs and their relations as in standard RE settings. Note that we process the
entire document as a whole instead of processing individual sentences separately as in

QA4IE: A Question Answering based Framework for Information Extraction 3

Process

Barack Hussein Obama II is an
American politician who served as

the 44th President of the United
States from 2009 to 2017.

Input Document: Wiki
Article of Barack Obama Knowledge Base:

Wikipedia Ontology

Candidate Entity List
Barack Obama

Michelle Robinson
...

Step 1: Entity
Recognition

Step 3: Question
Answering System

Answer List
Answer Text; Confidence

(August 4, 1961; 0.99)
(44th President of US; 0.8)

...

Step 2: Attribution
Discovery

Candidate Entity-Relation
/ Entity-Property Pairs

Barack
Obama

Date of Birth
Occupation
Spouse
...

Michelle
Robinson

Date of Birth
Occupation
Spouse
...

Query List

(Barack Obama, Date of Birth)
(Barack Obama, Occupation)

...

Output: Relation Triples
(Barack Obama; Date of Birth; August 4, 1961)
(Barack Obama; Occupation; President of US)

...Step 4: Entity Linking

...

Fig. 1. An overview of our QA4IE Framework.

previous systems. As shown in Figure 1, our QA4IE framework consists of four key
steps:

1. Recognize all the candidate entities in the input document D according to the
knowledge base K. These entities serve as the first entity ei in the relation triples R.

2. For each candidate entity ei, discover the potential relations/properties as rij from
the knowledge base K.

3. Given a candidate entity-relation or entity-property pair {ei, rij} as a query, find the
corresponding entity or value ej in the input document D using a QA system. The
query here can be directly formed by the word sequence of {ei, rij}, or built from
templates as in [21].

4. Since the results of step 3 are formed by free texts in the input documentD, we need
to link the results to the knowledge base K.
This framework determines each of the three elements in relation triples step by

step. Step 1 is equivalent to named entity recognition (NER), and state-of-the-art
NER systems [25,26] can achieve over 0.91 F1-score on CoNLL’03 [43], a well-
known NER benchmark. For attribution discovery in step 2, we can take advantage of
existing knowledge base ontologies such as Wikipedia Ontology to obtain a candidate
relation/property list according to NER results in step 1. Besides, there is also some
existing work on attribution discovery [20,49] and ontology construction [9] that can be
used to solve the problem in step 2. The most difficult part in our framework is step 3 in
which we need to find the entity (or value) ej in document D according to the previous
entity-relation (or entity-property) pair {ei, rij}. Inspired by recent success in QA and

4 L. Qiu et al.

MRC [37,46,47], we propose to solve step 3 in the setting of SQuAD [32] which is
a very popular QA task. The problem setting of SQuAD is that given a document D̃
and a question q, output a segment of text a in D̃ as the answer to the question. In
our framework, we assign the input document D as D̃ and the entity-relation (or entity-
property) pair {ei, rij} as q, and then we can get the answer a with a QA model. Finally
in step 4, since the QA model can only produce answers formed by input free texts, we
need to link the answer a to an entity ej in the knowledge base K, and the entity ej
will form the target relation triple as {ei, rij , ej}. Existing Entity Linking (EL) systems
[28,38] directly solve this problem especially when we have high quality QA results
from step 3.

As mentioned above, step 1, 2 and 4 in the QA4IE framework can be solved by
existing work. Therefore, in this paper, we mainly focus on step 3. According to the
recent progress in QA and MRC, deep neural networks are very good at solving this
kind of problem with a large-scale dataset to train the network. However, all previous IE
benchmarks [41] are too small to train neural network models typically used in QA, and
thus we need to build a large benchmark. Inspired by WikiReading [12], a recent large-
scale QA benchmark over Wikipedia, we find that the articles in Wikipedia together
with the high quality triples in knowledge bases such as Wikidata [45] and DBpedia
can form the supervision we need. Therefore, we build a large scale benchmark named
QA4IE benchmark which consists of 293K Wikipedia articles and 2M golden relation
triples with 636 different relation types.

Recent success on QA and MRC is mainly attributed to advanced deep learning
architectures such as attention-based and memory-augmented neural networks [5,42]
and the availability of large-scale datasets [11,13] especially SQuAD. The differences
between step 3 and SQuAD can be summarized as follows. First, the answer to the
question in SQuAD is restricted to a continuous segment of the input text, but in
QA4IE, we remove this constraint which may reduce the number of target relation
triples. Second, in existing QA and MRC benchmarks, the input documents are not
very long and the questions may be complex and difficult to understand by the model,
while in QA4IE, the input documents may be longer but the questions formed by
entity-relation (or entity-property) pair are much simpler. Therefore, in our model, we
incorporate Pointer Networks [44] to adapt to the answers formed by any words within
the document in any order as well as Self-Matching Networks [47] to enhance the ability
on modeling longer input documents.

1.3 Contributions

The contributions of this paper are as follows:

1. We propose a novel IE framework named QA4IE to overcome the weaknesses of
existing IE systems. As we discussed above, the problem of step 1, 2 and 4 can be
solved by existing work and we propose to solve the problem of step 3 with QA
models.

2. To train a high quality neural network QA model, we build a large IE benchmark in
QA style named QA4IE benchmark which consists of 293K Wikipedia articles and
2 million golden relation triples with 636 different relation types.

QA4IE: A Question Answering based Framework for Information Extraction 5

3. To adapt QA models to the IE problem, we propose an approach that enhances
existing QA models with Pointer Networks and Self-Matching Networks.

4. We compare our model with IE baselines on our QA4IE benchmark and achieve a
great improvement over previous baselines.

5. We open source our code and benchmark for repeatable experiments and further
study of IE.4

2 QA4IE Benchmark Construction

This section briefly presents the construction pipeline of QA4IE benchmark to solve the
problem of step 3 as in our framework (Figure 1). Existing largest IE benchmark [41]
is created with the help of QA-SRL annotations [10] which consists of 3.2K sentences
and 10K golden extractions. Following this idea, we study recent large-scale QA and
MRC datasets and find that WikiReading [12] creates a large-scale QA dataset based on
Wikipedia articles and WikiData relation triples [45]. However, we observe about 11%
of QA pairs with errors such as wrong answer locations or mismatch between answer
string and answer words. Besides, there are over 50% of QA pairs with the answer
involving words out of the input text or containing multiple answers. We consider these
cases out of the problem scope of this paper and only focus on the information within
the input text.

Therefore, we choose to build the benchmark referring the implementation of
WikiReading based on Wikipedia articles and golden triples from Wikidata and
DBpedia [4,6]. Specifically, we build our QA4IE benchmark in the following steps.
Dump and Preprocessing. We dump the English Wikipedia articles with Wikidata
knowledge base and match each article with its corresponding relation triples according
to its title. After cleaning data by removing low frequency tokens and special characters,
we obtain over 4M articles and 18M triples with over 800 relation types.
Clipping. We discard the triples with multiple entities (or values) for ej (account for
about 6%, e.g., a book may have multiple authors). Besides, we discard the triples with
any word in ej out of the corresponding article (account for about 50%). After this step,
we obtain about 3.5M articles and 9M triples with 636 relation types.
Incorporating DBpedia. Unlike WikiData, DBpedia is constructed automatically
without human verification. Relations and properties in DBpedia are coarse and noisy.
Thus we fix the existing 636 relation types in WikiData and build a projection from
DBpedia relations to these 636 relation types. We manually find 148 relations which
can be projected to a WikiData relation out of 2064 DBpedia relations. Then we gather
all the DBpedia triples with the first entity is corresponding to one of the above 3.5M
articles and the relation is one of the projected 148 relations. After the same clipping
process as above and removing the repetitive triples, we obtain 394K additional triples
in 302K existing Wikipedia articles.
Distillation. Since our benchmark is for IE, we prefer the articles with more golden
triples involved by assuming that Wikipedia articles with more annotated triples are
more informative and better annotated. Therefore, we figure out the distribution of the

4 Our source code and benchmark datasets can be found at https://github.com/SJTU-lqiu/QA4IE

6 L. Qiu et al.

Table 1. Detailed Statistics of QA4IE Benchmark.

S M L Total

SPAN
Docs 52898 29352 65124 147374
Triples 342361 195944 457509 995814

SEQ

Docs 52559 29188 64385 146132
Triples 341820 196138 457033 994991
Seq-triples 46521 27176 57507 131204
%Seq-triples 13.61 13.86 12.58 13.19

Table 2. Comparison between existing IE benchmarks and QA benchmarks. The first two are IE
benchmarks and the rest four are QA benchmarks.

Dataset Source #Docs #Triples/Queries Remarks

QA4IE Benchmark Wikipedia / WikiData / DBpedia 293K 2M automatical generation
Open IE [41] WSJ / Wikipedia 3.2K 10K generated from QA-SRL annotations
Zero-Shot Benchmark [21] Wikipedia / WikiData N/A 30M sentence level docs, only 120 relation types

WikiReading [12] Wikipedia / WikiData 4.7M 18.58M 11% errors, 50% out of document answers
SQuAD [32] Wikipedia 536 100K crowdsourced, span answers only
CNN/Daily Mail [11] CNN / Daily Mail 300K 1.4M semi-synthetic cloze-style query
CBT [13] Children’s Book 688K 688K semi-synthetic cloze-style query

number of golden triples in articles and decide to discard the articles with less than 6
golden triples (account for about 80%). After this step, we obtain about 200K articles
and 1.4M triples with 636 relation types.
Query and Answer Assignment. For each golden triple {ei, rij , ej}, we assign the
relation/property rij as the query and the entity ej as the answer because the Wikipedia
article and its corresponding golden triples are all about the same entity ei which is
unnecessary in the queries. Besides, we find the location of each ej in the corresponding
article as the answer location. As we discussed in Section 1, we do not restrict ej to a
continuous segment in the article as required in SQuAD. Thus we first try to detect a
matched span for each ej and assign this span as the answer location. Then for each of
the rest ej which has no matched span, we search a matched sub-sequence in the article
and assign the index sequence as the answer location. We name them span-triples and
seq-triples respectively. Note that each triple will have an answer location because we
have discarded the triples with unseen words in ej and if we can find multiple answer
locations, all of them will be assigned as ground truths.
Dataset Splitting. For comparing the performance on span-triples and seq-triples,
we set up two different datasets named QA4IE-SPAN and QA4IE-SEQ. In QA4IE-
SPAN, only articles with all span-triples are involved, while in QA4IE-SEQ, articles
with seq-triples are also involved. For studying the influence of the article length as
longer articles are normally more difficult to model by LSTMs, we split the articles
according to the article length. We name the set of articles with lengths shorter than
400 as S, lengths between 400 and 700 as M, lengths greater than 700 as L. Therefore
we obtain 6 different datasets named QA4IE-SPAN-S/M/L and QA4IE-SEQ-S/M/L.
A 5/1/5 splitting of train/dev/test sets is performed. The detailed statistics of QA4IE
benchmark are provided in Table 1.

We further compare our QA4IE benchmark with some existing IE and QA
benchmarks in Table 2. One can observe that QA4IE benchmark is much larger than
previous IE and QA benchmarks except for WikiReading and Zero-Shot Benchmark.

QA4IE: A Question Answering based Framework for Information Extraction 7

Text Words : x[1] x[2] x[3] x[n]

Word Embeding
Char Embeding

...

...Concat.
Embedding

...

q[1] q[2]Query Words : q[m]...

...

...

Highway
Layer

x1 x2 x3 xn q1 q2 qm

... ...

u1 u2 u3 un v1 v2 vm

Bi-LSTM
Layer

Attention
Flow
Layer

h1 h2 h3 hn

Self-Matching LayerBi-LSTM
with

Self-Matching
Layer ...

...

o1 o2 o3 on p1 p2 p3 pL

x[2] x[1] x[3] <eos>

...

Answer Text :

<eos>

...

...

Pointer
Network
Decoder

...

Query2Context and
Context2Query Attention

Fig. 2. An overview of our QA model.

However, as we mentioned at the beginning of Section 2, WikiReading is problematic
for IE settings. Besides, Zero-Shot Benchmark is a sentence-level dataset and we
have described the disadvantage of ignoring information across sentences at Section
1.1. Thus to our best knowledge, QA4IE benchmark is the largest document level IE
benchmark and it can be easily extended if we change our distillation strategy.

3 Question Answering Model

In this section, we describe our Question Answering model for IE. The model overview
is illustrated in Figure 2. The input of our model are the words in the input text
x[1], ..., x[n] and query q[1], ..., q[n]. We concatenate pre-trained word embeddings
from GloVe [30] and character embeddings trained by CharCNN [17] to represent
input words. The 2d-dimension embedding vectors of input text x1, ..., xn and query
q1, ..., qn are then fed into a Highway Layer [40] to improve the capability of word
embeddings and character embeddings as

gt = sigmoid(Wgxt + bg)

st = relu(Wxxt + bx)

ut = gt � st + (1− gt)� xt .
(1)

Here Wg,Wx ∈ Rd×2d and bg, bx ∈ Rd are trainable weights, ut is a d-dimension
vector. The function relu is the rectified linear units [19] and� is element-wise multiply
over two vectors. The same Highway Layer is applied to qt and produces vt.

8 L. Qiu et al.

Next, ut and vt are fed into a Bi-Directional Long Short-Term Memory Network
(BiLSTM) [14] respectively in order to model the temporal interactions between
sequence words:

u
′

t = BiLSTM(u
′

t−1, ut)

v
′

t = BiLSTM(v
′

t−1, vt) .
(2)

Here we obtain U = [u
′

1, ..., u
′

n] ∈ R2d×n and V = [v
′

1, ..., v
′

m] ∈ R2d×m. Then
we feed U and V into the attention flow layer [37] to model the interactions between
the input text and query. We obtain the 8d-dimension query-aware context embedding
vectors h1, ..., hn as the result.

After modeling interactions between the input text and queries, we need to enhance
the interactions within the input text words themselves especially for the longer text in
IE settings. Therefore, we introduce Self-Matching Layer [47] in our model as

ot = BiLSTM(ot−1, [ht, ct])

stj = wT tanh(Whhj + W̃hht)

αt
i = exp(sti)/Σ

n
j=1exp(s

t
j)

ct = Σn
i=1α

t
ihi .

(3)

Here Wh, W̃h ∈ Rd×8d and w ∈ Rd are trainable weights, [h, c] is vector
concatenation across row. Besides, αt

i is the attention weight from the tth word to the
ith word and ct is the enhanced contextual embeddings over the tth word in the input
text. We obtain the 2d-dimension query-aware and self-enhanced embeddings of input
text after this step. Finally we feed the embeddings O = [o1, ..., on] into a Pointer
Network [44] to decode the answer sequence as

pt = LSTM(pt−1, ct)

stj = wT tanh(Wooj +Wppt−1)

βt
i = exp(sti)/Σ

n
j=1exp(s

t
j)

ct = Σn
i=1β

t
ioi .

(4)

The initial state of LSTM p0 is on. We can then model the probability of the tth

token at by
P(at|a1, ..., at−1,O) = (βt

1, β
t
2, ..., β

t
n, β

t
n+1)

P(ati) , P(at = i|a1, ..., at−1,O) = βt
i . (5)

Here βt
n+1 denotes the probability of generating the “eos” symbol since the decoder

also needs to determine when to stop. Therefore, the probability of generating the
answer sequence a is as follows

P(a|O) =
∏
t

P(at|a1, ..., at−1,O) . (6)

Given the supervision of answer sequence y = (y1, ..., yL), we can write down the
loss function of our model as

L(θ) = −
L∑

t=1

log P(atyt
) . (7)

To train our model, we minimize the loss function L(θ) based on training examples.

QA4IE: A Question Answering based Framework for Information Extraction 9

Table 3. Comparison of QA models on SQuAD datasets. We only include the single model results
on the dev set from published papers.

Dev Set
Span Model EM / F1
LR Baseline [32] 40.0 / 51.0
Match-LSTM [46] 64.1 / 73.9
BiDAF [37] 67.7 / 77.3
R-Net [47] 71.1 / 79.5
MEMEN [29] 71.0 / 80.4
M-Reader+RL [15] 72.1 / 81.6
SAN [24] 76.2 / 84.1
Sequence Model
Match-LSTM (Seq) [46] 54.4 / 68.2
Our Model 61.7 / 72.5

4 Experiments

4.1 Experimental Setup

We build our QA4IE benchmark following the steps described in Section 2. In
experiments, we train and evaluate our QA models on the corresponding train and test
sets while the hyper-parameters are tuned on dev sets. In order to make our experiments
more informative, we also evaluate our model on SQuAD dataset [32].

The preprocessing of our QA4IE benchmark and SQuAD dataset are all performed
with the open source code from [37]. We use 100 1D filters with width 5 to construct
the CharCNN in our char embedding layer. We set the hidden size d = 100 for all the
hidden states in our model. The optimizer we use is the AdaDelta optimizer [50] with
an initial learning rate of 2. A dropout [39] rate of 0.2 is applied in all the CNN, LSTM
and linear transformation layers in our model during training. For SQuAD dataset and
our small sized QA4IE-SPAN/SEQ-S datasets, we set the max length of input texts as
400 and a mini-batch size of 20. For middle sized (and large sized) QA4IE datasets,
we set the max length as 700 (800) and batch size as 7 (5). We introduce an early
stopping in training process after 10 epochs. Our model is trained on a GTX 1080 Ti
GPU and it takes about 14 hours on small sized QA4IE datasets. We implement our
model with TensorFlow [1] and optimize the computational expensive LSTM layers
with LSTMBlockFusedCell5.

4.2 Results in QA Settings

We first perform experiments in QA settings to evaluate our QA model on both
SQuAD dataset and QA4IE benchmark. Since our goal is to solve IE, not QA, the
motivation of this part of experiments is to evaluate the performance of our model and
make a comparison between QA4IE benchmark and existing datasets. Two metrics are
introduced in the SQuAD dataset: Exact Match (EM) and F1-score. EM measures the
percentage that the model prediction matches one of the ground truth answers exactly
while F1-score measures the overlap between the prediction and ground truth answers.
Our QA4IE benchmark also adopts these two metrics.

5 https://www.tensorflow.org/api docs/python/tf/contrib/rnn/LSTMBlockFusedCell

10 L. Qiu et al.

Table 4. Comparison of QA models on 6 datasets of our QA4IE benchmark. The BiDAF model
cannot work on our SEQ datasets thus the results are N/A.

SPAN-S SPAN-M SPAN-L SEQ-S SEQ-M SEQ-L
Model EM / F1 EM / F1 EM / F1 EM / F1 EM / F1 EM / F1
BiDAF [37] 88.89 / 90.89 82.37 / 85.04 68.00 / 70.29 N/A N/A N/A
Match-LSTM [46] 85.88 / 88.21 79.19 / 82.05 66.87 / 70.44 89.60 / 91.95 83.57 / 87.40 62.64 / 68.98
Our Model 91.53 / 93.19 86.04 / 88.65 70.86 / 74.51 91.20 / 93.04 85.52 / 88.43 71.96 / 76.11

Table 5. Model ablation on QA4IE-SEQ-S. The first line is our original model and each of the
following lines is the original model with a component ablated.

EM / F1 Training hours
Our Original Model 91.20 / 93.04 14
− Char Embedding 89.78 / 91.76 14
− Highway 90.04 / 91.97 14
− Self Matching 89.55 / 91.60 10
− LSTMBlockFusedCell 90

Table 3 presents the results of our QA model on SQuAD dataset. Our model
outperforms the previous sequence model but is not competitive with span models
because it is designed to produce sequence answers in IE settings while baseline span
models are designed to produce span answers for SQuAD dataset.

The comparison between our QA model and two baseline QA models on our QA4IE
benchmark is shown in Table 4. For training of both baseline QA models,6 we use
the same configuration of max input length as our model and tune the rest of hyper-
parameters on dev sets. Our model outperforms these two baselines on all 6 datasets.
The performance is good on S and M datasets but worse for longer documents. As we
mentioned in Section 4.1, we set the max input length as 800 and ignore the rest words
on L datasets. Actually, there are 11% of queries with no answers in the first 800 words
in our benchmark. Processing longer documents is a tough problem [7] and we leave
this to our future work.

To study the improvement of each component in our model, we present model
ablation study results in Table 5. We do not involve Attention Flow Layer and
Pointer Network Decoder as they cannot be replaced by other architectures with
the model still working. We can observe that the first three components can
effectively improve the performance but Self Matching Layer makes the training
more computationally expensive by 40%. Besides, the LSTMBlockFusedCell works
effectively and accelerates the training process by 6 times without influencing the
performance.

4.3 Results in IE Settings

In this subsection, we put our QA model in the entire pipeline of our QA4IE framework
(Figure 1) and evaluate the framework in IE settings. Existing IE systems are all free-
text based Open IE systems, so we need to manually evaluate the free-text based results
in order to compare our model with the baselines. Therefore, we conduct experiments

6 The code of BiDAF is from https://github.com/allenai/bi-att-flow.
The code of Match-LSTM is from https://github.com/fuhuamosi/MatchLstm.

QA4IE: A Question Answering based Framework for Information Extraction 11

0 20 40 60 80
Recall

5

10

15

20

25

30

Pr
ec

is
io

n

mul_score
avg_score

Fig. 3. Precision-recall curves with two confidence scores on the dev set of QA4IE-SPAN-S.

on a small dataset, the dev set of QA4IE-SPAN-S which consists of 4393 documents
and 28501 ground truth queries.

Our QA4IE benchmark is based on Wikipedia articles and all the ground truth triples
of each article have the same first entity (i.e. the title of the article). Thus, we can
directly use the title of the article as the first entity of each triple without performing
step 1 (entity recognition) in our framework. Besides, all the ground truth triples in our
benchmark are from knowledge base where they are disambiguated and aggregated in
the first place, and therefore step 4 (entity linking) is very simple and we do not evaluate
it in our experiments.

A major difference between QA settings and IE settings is that in QA settings, each
query corresponds to an answer, while in the QA4IE framework, the QA model take
a candidate entity-relation (or entity-property) pair as the query and it needs to tell
whether an answer to the query can be found in the input text. We can consider the IE
settings here as performing step 2 and then step 3 in the QA4IE framework.

In step 2, we need to build a candidate query list for each article in the dataset.
Instead of incorporating existing ontology or knowledge base, we use a simple but
effective way to build the candidate query list of an article. Since we have a ground truth
query list with labeled answers of each article, we can add all the neighboring queries of
each ground truth query into the query list. The neighboring queries are defined as two
queries that co-occur in the same ground truth query list of any articles in the dataset.
We transform the dev set of QA4IE-SPAN-S above by adding neighboring queries into
the query list. After this step, the number of queries grows to 426336, and only 28501
of them are ground truth queries labeled with an answer.

In step 3, we require our QA model to output a confidence score along with the
answer to each candidate query. Our QA model produces no answer to a query when
the confidence score is less than a threshold δ or the output is an “eos” symbol. For
the answers with a confidence score ≥ δ, we evaluate them by the EM measurement
with ground truth answers and count the true positive samples in order to calculate the
precision and recall under the threshold δ. Specifically, we try two confidence scores
calculated as follows:

Scoremul =

L∏
t=1

P(at
it), Scoreavg =

L∑
t=1

P(at
it)/L , (8)

where (a1i1 , ..., a
L
iL
) is the answer sequence and P(ati) is defined in Eq. (5).Scoremul

is equivalent to the training loss in Eq. (7) and Scoreavg takes the answer length into
account.

12 L. Qiu et al.

Table 6. Results of three Open IE baselines on the dev set of QA4IE-SPAN-S.

Open IE 4 Stanford IE ClauseIE
#Extracted Triples 32309 120147 75078
#After Filtering 487 467 554
#True Positive 403 301 133

The precision-recall curves of our framework based on the two confidence scores
are plotted in Figure 3. We can observe that the EM rate we achieve in QA settings is
actually the best recall (91.87) in this curve (by setting δ = 0). The best F1-scores of the
two curves are 29.97 (precision = 21.61, recall = 48.85, δ = 0.91) for Scoremul and
31.05 (precision = 23.93, recall = 44.21, δ = 0.97) for Scoreavg. Scoreavg is better
than Scoremul, which suggests that the answer length should be taken into account.

We then evaluate existing IE systems on the dev set of QA4IE-SPAN-S and
empirically compare them with our framework. Note that while [21] is closely related to
our work, we cannot fairly compare our framework with [21] because their systems are
in the sentence level and require additional negative samples for training. [35] is also
related to our work, but their dataset and code have not been published yet. Therefore,
we choose to evaluate three popular Open IE systems, Open IE 4 [36], Stanford IE [3]
and ClauseIE [8].

Since Open IE systems take a single sentence as input and output a set of free-
text based triples, we need to find the sentences involving ground truth answers and
feed the sentences into the Open IE systems. In the dev set of QA4IE-SPAN-S, there
are 28501 queries with 44449 answer locations labeled in the 4393 documents. By
feeding the 44449 sentences into the Open IE systems, we obtain a set of extracted
triples from each sentence. We calculate the number of true positive samples by first
filtering out triples with less than 20% words overlapping with ground truth answers
and then asking two human annotators to verify the remaining triples independently.
Since in the experiments, our framework is given the ground-truth first entity of each
triple (the title of the corresponding Wikipedia article) while the baseline systems do
not have this information, we ask our human annotators to ignore the mistakes on the
first entities when evaluating triples produced by the baseline systems to offset this
disadvantage. For example, the 3rd case of ClauseIE and the 4th case of Open IE 4
in Table 7 are all labeled as correct by our annotators even though the first entities are
pronouns. The two human annotators reached an agreement on 191 out of 195 randomly
selected cases.

The evaluation results of the three Open IE baselines are shown in Table 6. We
can observe that most of the extracted triples are not related to ground truths and the
precision and recall are all very low (around 1%) although we have already helped the
baseline systems locate the sentences containing ground truth answers.

4.4 Case Study

In this subsection, we perform case studies of IE settings in Table 7 to better understand
the models and benchmarks. The baseline Open IE systems produce triples by analyzing
the subjects, predicates and objects in input sentences, and thus our annotators lower
the bar of accepting triples. However, the analysis on semantic roles and parsing

QA4IE: A Question Answering based Framework for Information Extraction 13

Table 7. Case study of three Open IE baselines and our framework on dev set of QA4IE-SPAN-S,
the results of baselines are judged by two human annotators while the results of our framework
are measured by Exact Match with ground truth. The triples in red indicate the wrong cases.

Input Sentence Ground Truth Triple Open IE 4 Stanford IE ClauseIE Ours

Dieter Kesten was born on 9 June 1914 at
Gelsenkirchen.

(Dieter Kesten; date of
birth; 9 June 1914)

(Dieter Kesten; was
born; on 9 June 1914
at Gelsenkirchen)

(Dieter Kesten; was
born on; 9 June 1914)

(Dieter Kesten; was
born; on 9 June 1914)

(Dieter Kesten; date of
birth; 9 June 1914)

Hamilton died on 2 March 1625 at
Whitehall, London, from a fever and
was buried in the family mausoleum at
Hamilton, on 2 September of that year.

(James Hamilton; date
of death; 2 March
1625)

(Hamilton; died; on 2
March 1625 at White-
hall)

(Hamilton; died on; 2
September)
(Hamilton; died on; 2
March 1625)

(Hamilton; died on; 2)
(James Hamilton; date
of death; 2 March
1625)

She attended Texas A&M University,
where she swam for the Texas A&M
Aggies swimming and diving team in
National Collegiate Athletic Association
(NCAA) competition from 2011 to 2014.

(Breeja Larson; mem-
ber of sports team;
Texas A&M Aggies)

(She; attended; Texas
A&M University)

(She; attended; M
University)

(She; attended; Texas
A&M University)
(she; swam; for the
Texas A&M Aggies
swimming and diving
team)

(Breeja Larson; mem-
ber of sports team;
Texas A&M Aggies)

His grave and memorial are at Balbeggie
Churchyard, St. Martin’s, near Perth,
Scotland.

(John Simpson; place
of death; St. Martin’s)

(His grave and memo-
rial; are; at Balbeggie
Churchyard, St. Mar-
tin’s, near Perth)

(Perth; near Church-
yard is; St. Martin’s)

(Balbeggie
Churchyard near
Perth Scotland; is; St.
Martin’s)

(John Simpson; place
of death; Balbeggie
Churchyard)

He served in the British Army and was
wounded in World War I.

(William Dobbie;
conflict; World War I)

(He; was wounded; in
World War I)

(He; was wounded in;
World War I)

(He; was wounded; in
World War I)

(William Dobbie;
conflict; World War I)

trees cannot work very well on complicated input sentences like the 2nd and the 3rd
cases. Besides, the baseline systems can hardly solve the last two cases which require
inference on input sentences.

Our framework works very well on this dataset with the QA measurements EM
= 91.87 and F1 = 93.53 and the IE measurements can be found in Figure 3. Most of
the error cases are the fourth case which is acceptable by human annotators. Note that
our framework takes the whole document as the input while the baseline systems take
the individual sentence as the input, which means the experiment setting is much more
difficult for our framework.

4.5 Human Evaluation on QA4IE Benchmark

Finally, we perform a human evaluation on our QA4IE benchmark to verify the
reliability of former experiments. The evaluation metrics are as follows:
Triple Accuracy is to check whether each ground truth triple is accurate (one cannot
find conflicts between the ground truth triple and the corresponding article) because the
ground truth triples from WikiData and DBpedia may be incorrect or incomplete.
Contextual Consistency is to check whether the context of each answer location is
consistent with the corresponding ground truth triple (one can infer from the context to
obtain the ground truth triple) because we keep all matched answer locations as ground
truths but some of them may be irrelevant with the corresponding triple.
Triple Consistency is to check whether there is at least one answer location that is
contextually consistent for each ground truth triple. It can be calculated by counting the
results of Contextual Consistency.

We randomly sample 25 articles respectively from the 6 datasets (in total of 1002
ground truth triples with 2691 labeled answer locations) and let two human annotators
label the Triple Accuracy for each ground truth triple and the Contextual Consistency
for each answer location. The two human annotators reached an agreement on 131 of
132 randomly selected Triple Accuracy cases and on 229 of 234 randomly selected
Contextual Consistency cases. The human evaluation results are shown in Table 8.
We can find that the Triple Accuracy and the Triple Consistency is acceptable while

14 L. Qiu et al.

Table 8. Human evaluation on QA4IE benchmark.
SPAN-S SPAN-M SPAN-L SEQ-S SEQ-M SEQ-L Total

Triple Accuracy 98.8% 96.9% 98.1% 97.1% 96.2% 97.8% 97.5%
161 / 163 154 / 159 159 / 162 170 / 175 152 / 158 181 / 185 977 / 1002

Contextual Consistency 78.6% 65.1% 70.3% 75.4% 73.9% 82.4% 74.6%
195 / 248 239 / 367 494 / 703 230 / 305 264 / 357 586 / 711 2008 / 2691

Triple Consistency 93.3% 87.4% 91.4% 92.0% 92.4% 92.4% 91.5%
152 / 163 139 / 159 148 / 162 161 / 175 146 / 158 171 / 185 917 / 1002

the Contextual Consistency still needs to be improved. The Contextual Consistency
problem is a weakness of distant supervision, and we leave this to our future work.

5 Conclusion

In this paper, we propose a novel QA based IE framework named QA4IE to address
the weaknesses of previous IE solutions. In our framework (Figure 1), we divide the
complicated IE problem into four steps and show that the step 1, 2 and 4 can be solved
well enough by existing work. For the most difficult step 3, we transform it to a QA
problem and solve it with our QA model. To train this QA model, we construct a large
IE benchmark named QA4IE benchmark that consists of 293K documents and 2 million
golden relation triples with 636 different relation types. To our best knowledge, our
QA4IE benchmark is the largest document level IE benchmark. We compare our system
with existing best IE baseline systems on our QA4IE benchmark and the results show
that our system achieves a great improvement over baseline systems.

For the future work, we plan to solve the triples with multiple entities as the second
entity, which is excluded from problem scope in this paper. Besides, processing longer
documents and improving the quality of our benchmark are all challenging problems as
we mentioned previously. We hope this work can provide new thoughts for the area of
information extraction.

Acknowledgements

W. Zhang is the corresponding author of this paper. The work done by SJTU is
sponsored by National Natural Science Foundation of China (61632017, 61702327,
61772333) and Shanghai Sailing Program (17YF1428200).

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine learning. In: OSDI.
vol. 16, pp. 265–283 (2016)

2. Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections.
In: Proceedings of the fifth ACM conference on Digital libraries. pp. 85–94. ACM (2000)

3. Angeli, G., Premkumar, M.J.J., Manning, C.D.: Leveraging linguistic structure for open
domain information extraction. In: ACL. vol. 1, pp. 344–354 (2015)

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A nucleus
for a web of open data. In: The semantic web, pp. 722–735. Springer (2007)

QA4IE: A Question Answering based Framework for Information Extraction 15

5. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align
and translate. In: International Conference on Learning Representations (ICLR) (2015)

6. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:
Dbpedia-a crystallization point for the web of data. Web Semantics: science, services and
agents on the world wide web 7(3), 154–165 (2009)

7. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading wikipedia to answer open-domain
questions. In: ACL. vol. 1, pp. 1870–1879 (2017)

8. Del Corro, L., Gemulla, R.: Clausie: clause-based open information extraction. In:
Proceedings of international conference on World Wide Web. pp. 355–366 (2013)

9. Gupta, R., Halevy, A., Wang, X., Whang, S.E., Wu, F.: Biperpedia: An ontology for search
applications. Proceedings of the VLDB Endowment 7(7), 505–516 (2014)

10. He, L., Lewis, M., Zettlemoyer, L.: Question-answer driven semantic role labeling: Using
natural language to annotate natural language. In: EMNLP. pp. 643–653 (2015)

11. Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M.,
Blunsom, P.: Teaching machines to read and comprehend. In: Advances in Neural
Information Processing Systems. pp. 1693–1701 (2015)

12. Hewlett, D., Lacoste, A., Jones, L., Polosukhin, I., Fandrianto, A., Han, J., Kelcey, M.,
Berthelot, D.: Wikireading: A novel large-scale language understanding task over wikipedia.
In: ACL. vol. 1, pp. 1535–1545 (2016)

13. Hill, F., Bordes, A., Chopra, S., Weston, J.: The goldilocks principle: Reading children’s
books with explicit memory representations. arXiv preprint arXiv:1511.02301 (2015)

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation (1997)
15. Hu, M., Peng, Y., Qiu, X.: Reinforced mnemonic reader for machine comprehension. CoRR,

abs/1705.02798 (2017)
16. Ji, H., Grishman, R.: Knowledge base population: Successful approaches and challenges. In:

ACL. pp. 1148–1158 (2011)
17. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language models. In:

AAAI. pp. 2741–2749 (2016)
18. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures

for named entity recognition. In: Proceedings of NAACL-HLT. pp. 260–270 (2016)
19. Le, Q.V., Jaitly, N., Hinton, G.E.: A simple way to initialize recurrent networks of rectified

linear units. arXiv preprint arXiv:1504.00941 (2015)
20. Lee, T., Wang, Z., Wang, H., Hwang, S.w.: Attribute extraction and scoring: A probabilistic

approach. In: 29th International Conference on Data Engineering. pp. 194–205 (2013)
21. Levy, O., Seo, M., Choi, E., Zettlemoyer, L.: Zero-shot relation extraction via reading

comprehension. In: CoNLL. pp. 333–342 (2017)
22. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for

knowledge graph completion. In: AAAI. vol. 15, pp. 2181–2187 (2015)
23. Ling, X., Weld, D.S.: Fine-grained entity recognition. In: AAAI (2012)
24. Liu, X., Shen, Y., Duh, K., Gao, J.: Stochastic answer networks for machine reading

comprehension. arXiv preprint arXiv:1712.03556 (2017)
25. Luo, G., Huang, X., Lin, C.Y., Nie, Z.: Joint entity recognition and disambiguation. In:

EMNLP. pp. 879–888 (2015)
26. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional lstm-cnns-crf. In: ACL.

vol. 1, pp. 1064–1074 (2016)
27. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction

without labeled data. In: ACL. pp. 1003–1011 (2009)
28. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambiguation: a

unified approach. TACL 2, 231–244 (2014)
29. Pan, B., Li, H., Zhao, Z., Cao, B., Cai, D., He, X.: Memen: Multi-layer embedding with

memory networks for machine comprehension. arXiv preprint arXiv:1707.09098 (2017)

16 L. Qiu et al.

30. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In:
EMNLP. pp. 1532–1543 (2014)

31. Pyysalo, S., Ginter, F., Heimonen, J., Björne, J., Boberg, J., Järvinen, J., Salakoski, T.:
Bioinfer: a corpus for information extraction in the biomedical domain. BMC bioinformatics
8(1), 50 (2007)

32. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine
comprehension of text. In: EMNLP. pp. 2383–2392 (2016)

33. Ren, X., Wu, Z., He, W., Qu, M., Voss, C.R., Ji, H., Abdelzaher, T.F., Han, J.: Cotype: Joint
extraction of typed entities and relations with knowledge bases. In: Proceedings of the 26th
International Conference on World Wide Web. pp. 1015–1024 (2017)

34. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without labeled
text. In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. pp. 148–163. Springer (2010)

35. Roth, B., Conforti, C., Poerner, N., Karn, S., Schütze, H.: Neural architectures for open-type
relation argument extraction. arXiv preprint arXiv:1803.01707 (2018)

36. Schmitz, M., Bart, R., Soderland, S., Etzioni, O., et al.: Open language learning for
information extraction. In: EMNLP. pp. 523–534 (2012)

37. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for machine
comprehension. arXiv preprint arXiv:1611.01603 (2016)

38. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: Issues, techniques, and
solutions. IEEE Transactions on Knowledge and Data Engineering 27(2), 443–460 (2015)

39. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A
simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research 15(1), 1929–1958 (2014)

40. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint
arXiv:1505.00387 (2015)

41. Stanovsky, G., Dagan, I.: Creating a large benchmark for open information extraction. In:
EMNLP. pp. 2300–2305 (2016)

42. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In: Advances in
neural information processing systems. pp. 2440–2448 (2015)

43. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In: Proceedings of NAACL-HLT. pp. 142–147 (2003)

44. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural Information
Processing Systems. pp. 2692–2700 (2015)

45. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Communica-
tions of the ACM 57(10), 78–85 (2014)

46. Wang, S., Jiang, J.: Machine comprehension using match-lstm and answer pointer. arXiv
preprint arXiv:1608.07905 (2016)

47. Wang, W., Yang, N., Wei, F., Chang, B., Zhou, M.: Gated self-matching networks for reading
comprehension and question answering. In: ACL. vol. 1, pp. 189–198 (2017)

48. Xu, K., Feng, Y., Huang, S., Zhao, D.: Semantic relation classification via convolutional
neural networks with simple negative sampling. In: EMNLP. pp. 536–540 (2015)

49. Yahya, M., Whang, S., Gupta, R., Halevy, A.: Renoun: Fact extraction for nominal attributes.
In: EMNLP. pp. 325–335 (2014)

50. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701
(2012)

51. Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction via piecewise
convolutional neural networks. In: EMNLP. pp. 1753–1762 (2015)

52. Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P., Xu, B.: Joint extraction of entities and
relations based on a novel tagging scheme. In: ACL. vol. 1, pp. 1227–1236 (2017)

	QA4IE: A Question Answering based Framework for Information Extraction
	1 Introduction and Background
	1.1 Previous IE Systems
	1.2 QA4IE Framework
	1.3 Contributions

	2 QA4IE Benchmark Construction
	3 Question Answering Model
	4 Experiments
	4.1 Experimental Setup
	4.2 Results in QA Settings
	4.3 Results in IE Settings
	4.4 Case Study
	4.5 Human Evaluation on QA4IE Benchmark

	5 Conclusion

