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Abstract. Alzheimer’s disease (AD) is the only major cause of mortality in the 
world without an effective disease modifying treatment. Evidence supporting the 
so called “disconnection hypothesis” suggests that functional connectivity bi-
omarkers may have clinical potential for early detection of AD. However, known 
issues with low test-retest reliability and signal to noise in functional connectivity 
may prevent accuracy and subsequent predictive capacity. We validate the utility 
of a novel principal component based diagnostic identifiability framework to in-
crease separation in functional connectivity across the Alzheimer’s spectrum by 
identifying and reconstructing FC using only AD sensitive components or con-
nectivity modes. We show that this framework (1) increases test-retest corre-
spondence and (2) allows for better separation, in functional connectivity, of di-
agnostic groups both at the whole brain and individual resting state network level. 
Finally, we evaluate a posteriori the association between connectivity mode 
weights with longitudinal neurocognitive outcomes. 
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1 Introduction 

Developing biomarkers for early detection of Alzheimer’s disease (AD) is of critical 
importance as researchers believe clinical trial failures are in part due to testing of ther-
apeutic agents too late in the disease [1]. The AD disconnection syndrome hypothesis 
[2] posits that AD spreads via propagation of dysfunctional signaling, indicating that 
functional connectivity (FC) biomarkers have potential for early detection. Despite this 
potential, known issues with high amounts of variability in acquisition and prepro-
cessing of resting state fMRI, and ultimately low disease-related signal to noise ratio in 
FC [3], remain a critical barrier to incorporating FC as a clinical biomarker of AD. 
Recent work validated the utility of group level principal component analysis (PCA) to 
denoise FC by reconstructing subject level FC using PCs which optimized test-retest 
reliability through a measurement denominated differential identifiability [4]. Building 
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on this work, we expand the utility of the framework to increase separation across di-
agnostic groups in the AD spectrum by reconstructing individual FC using AD sensitive 
PCs. We identify AD sensitive PCs using a novel diagnostic identifiability metric (D). 
We evaluate the proposed method with data from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI2/GO) using group balanced, bootstrapped random sampling.  

2 Methods 

2.1 Subject Demographics 

Of the original 200 ADNI2/GO individuals with resting state fMRI scans, subjects were 
excluded if they (1) had only extended resting state scans, (2) had no Amyloid status 
provided, (3) were cognitively impaired, but Amyloid-beta protein negative (Ab-) neg-
ative, and/or had (4) over 30% of fMRI time points censored (see 2.2). The final sample 
included 82 individuals. Only Ab positive (Ab+) individuals were included in cogni-
tively impaired groups to avoid confounding by non-AD neurodegenerative patholo-
gies. Subjects were sorted into 5 diagnostic groups using criterion from ADNI2/GO 
and Ab positivity: (1) normal controls (CNAß-, n = 15), (2) pre-clinical AD (CNAß+, n = 
12), (3) early mild cognitive impairment (EMCIAß+, n = 22), (4) late mild cognitive 
impairment (LMCIAß+, n = 12), and (5) dementia (ADAß+, n = 21). Ab status was deter-
mined using either mean PET standard uptake value ratio cutoff (Florbetapir > 1.1, 
University of Berkley) or CSF Aß levels [5]. Composite scores were calculated for 
visuospatial, memory, executive function, and language domains [6] from the 
ANDI2/GO battery. No demographic group effects were observed. All neurocognitive 
domain scores exhibited a significant group effect (Table1).  

Table 1. Demographics and Neurocognitive Comparisons of Diagnostic Groups.   

** Significant group effect (Chi-square or ANOVA as appropriate, a = 0.05) 
 

2.2 fMRI Data Processing 

 

Variable CNAß- 

(n = 14) 
CNAß+ 

(n = 12) 
EMCIAß+ 

(n = 22) 
LMCIAß+ 

(n = 13) 
ADAß+ 

(n = 21) 
Age (Years) (SD) 74.2 (8.8) 75.9 (7.0) 72.6 (5.2) 73.3 (6.1) 73.5 (7.6) 

Sex (% F) 64.2 41.7 50 61.6 42.9 
Years of Education (SD) 16.7 (2.3) 15.8 (2.6) 15.2 (2.6) 16 (1.8) 15.4 (2.6) 

Visuospatial 
Domain Score (SD)** 9.7 (0.61) 9.3 (0.9) 9.4 (0.9) 83 (2.3) 7.4 (2.1) 

Language Domain Score (SD)** 49.2 (4.2) 48.8 (4.4) 46.2 (5.8) 43.1 (8.0) 34.8 (9.6) 

Memory Domain Score (SD)** 125.4 (41.1) 142 (34.5) 104.9 (46.6) 81.0 (36.7) 34.2 (21.8) 

Executive Function Domain Score 
(SD)** 99.0 (26.8) 117.6 (27.4) 135.0 (48.6) 166.3 (102.0) 284.6 (101.0) 
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MRI scans used for construction of FC matrices included T1-weighted MPRAGE 
scans and EPI fMRI scans from the initial visit in ADNI2/GO (www.adni-info.org for 
protocols). fMRI scans were processed in MATLAB using an FSL based pipeline fol-
lowing processing guidelines by Power et al [7] and described in detail in Amico et al. 
[8]. Subjects with over 30% of volumes censored due to motion were discarded to en-
sure data quality. For purposes of denoising FC matrices [4], processed fMRI time se-
ries were split into halves, representing “test” and “retest” sessions. 

2.3 Test-Retest Identifiability and Construction and of Individual FC 
Matrices  

For each subject, two FC matrices were created from the “test” and “retest” halves of 
the fMRI time-series. FC nodes were defined using a 286 region parcellation [9], as 
detailed in Amico et al. [8]. Functional connectivity matrices were derived by calculat-
ing the pairwise Pearson correlation coefficient (𝑟"#) between the mean fMRI time-se-
ries of all nodes. “Test” and “retest” FCs were de-noised by using group level PCA to 
maximize test-retest differential identifiability (Idiff) [4]. The “identifiability matrix” I 
was defined as the matrix of pairwise correlations (square, non-symmetric) between the 
subjects’ FCtest and FCretest.  The dimension of I is N2 where N is the number of subjects 
in the cohort. Self-identifiability, (Iself, Eqn. 1), was defined to be the average of the 
main diagonal elements of I, consisting of correlations between FCtest and FCretest from 
the same subjects. Iothers (Eqn. 2), was defined as average of the off-diagonal elements 
of matrix I, consisting of correlations between FCtest and FCretest of different subjects. 
Differential identifiability (Idiff, Eqn. 3) was defined as the difference between Iself   and 
Iothers. 
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Group level PCA  [10] was applied in the FC domain, on a data matrix (Y1) contain-
ing vectorized FCtest and FCretest (upper triangular) from all subjects. PCs throughout 
this paper will be numbered in order of variance explained. The number of PCs esti-
mated was constrained to 2*N, the rank of the data matrix Y1. Following decomposi-
tion, PCs were iteratively added in order of variance explained. Denoised FCtest and 
FCretest matrices were reconstructed using the number of PCs (n) that maximized Idiff  
(Eqn3), while maintaining a minimum Iothers value of 0.4, such that between-subject FC 
was neither overly correlated (loss of valid inter-subject variability) nor overly orthog-
onal (inter-subject variability dominated by noise). This was done because the 
ADNI2/GO fMRI data was noisier than data on which this method was previously im-
plemented, as evidenced by a much lower original between-subject FC correlation 
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(Iothers 0.22 ADNI vs. 0.4 Human Connectome Project rs-fMRI).  Therefore, not setting 
a minimum threshold for Iothers led to the algorithm picking PCs that were “specialized” 
to specific subjects.  The threshold 0.4 was specifically chosen because it reflected av-
erage Iothers values seen in FCs from previous data, on which this method was imple-
mented [4].  

Final, de-noised FC matrices were computed as the average of FCtest and FCretest.  
Nodes were assigned to 9 resting state subnetworks (RSN/RSNs), visual (VIS), somato-
motor (SM), dorsal attention (DA), ventral attention (VA), limbic (L), fronto-parietal 
(FP), and default mode network (DMN) [11] with the additional subcortical (SUB) and 
cerebellar (CER).  

2.4 Diagnostic Identifiability  

With the goal of early detection in mind, we hypothesized that FC in non-dementia 
groups would become significantly less identifiable from FC in 𝐴𝐷?@A with increased 
diagnostic proximity to 𝐴𝐷?@A.  Figure 1 delineates the work flow for finding AD sen-
sitive PCs using a novel diagnostic identifiability metric (D), which quantifies differ-
entiability in connectivity between each non-dementia group (g) and 𝐴𝐷?@A and is cal-
culated from the correlation matrix (I) of Y2, containing final, de-noised FC from all 
subjects. Dg was defined as the average correlation within a non-dementia group, 
corr(g,g), minus the average correlation between that non-dementia group and 𝐴𝐷?@A, 
corr(g,	𝐴𝐷?@A). D, rather than variance explained, was used to filter components, as it 
was hypothesized that early disease changes likely do not account for a large portion of 
between subject variance. 

	𝐷B = 𝑐𝑜𝑟𝑟 𝑔, 𝑔 − 𝑐𝑜𝑟𝑟 𝑔, 𝐴𝐷?@A 	(4) 

Group level PCA was again performed on the matrix Y2. Here, the number of PCs was 
constrained to n = 35 PCs, the rank of the Y2 matrix. Y2 was iteratively reconstructed 
using a subset of the n PCs, selected based on maximizing Dg. Starting with PC1, PC2…n  
were iteratively added based on their influence on average(Dg). At each iteration, the 
PCj* which most improved average(Dg) upon its addition to previously selected PCs, 
was selected. To avoid results driven by a subset of the population or by differences in 
sample sizes between groups, the cohort was randomly sampled 30 times, following 
total cohort PCA, in a group balanced fashion (nsample = 50; ng = 10). The number of 
bootstraps was chosen to allow adequate estimation of the Dg distribution while keeping 
run-time of the algorithm, reasonable. Bootstrapped distributions of Dg were generated 
for each number of PCs. The number of PCs (n*) which maximized average(Dg) was 
found (Eqn. 5). AD sensitive PCs were defined as those which appeared within the n* 
most influential PCs with the greatest frequency across samples. Final FC matrices 
were re-constructed using only AD sensitive PCs. 

𝑛∗ = 	𝑛, 𝑎𝑡	𝑎𝑟𝑔𝑚𝑎𝑥L(
1
𝑔

𝐷B(n))
B

(5) 
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Additionally, Dg curves were estimated and disease sensitive PCs were identified for 
the 9 RSNs individually, by calculating IRSN using the subset of connections where at 
least one of the nodes in the connection was part of the RSN.  

 
Fig. 1. Diagnostic Identifiability workflow. 

2.5 Statistical Validation and Association with Neurocognitive 
Outcomes 

Due to the small number of bootstraps, differences between Dg distributions were as-
sessed at n* PCs by checking if the median of one distribution was an outlier relative 
to a reference distribution using non-parametric confidence intervals defined with the 
median and interquartile range (IQR). First, Dg distributions from each RSN were com-
pared to those from WB. Next, WB and RSN Dg distributions were compared to a cor-
responding null model. Null models for the WB and each RSN were constructed by 
randomly permuting diagnostic group membership among individuals selected at each 
bootstrap, such that Dg for the null model represented identifiability of a random heter-
ogeneous group from a random heterogeneous reference group. Finally, individual D 
values (Di) were calculated for each subject using FC reconstructed with the n* PCs.  
ANOVA (a < 0.05) with follow up pairwise tests, was performed on WB Di distribu-
tions to test for a group effect. Stepwise regressions (F-test, a = 0.05), starting with 
gender, age and education, were be used to test for associations between the n* PC 
weights and longitudinal changes in neurocognitive outcomes (0, 1, 2 years post imag-
ing).  

3 Results 

3.1 Test-Retest Identifiability 

Figure 2 details the results of denoising FC using differential test-retest differential 
identifiability. An optimal reconstruction based on the first n = 35 PCs (in decreasing 
order of explained variance) was chosen (Figure 2A). Iself increased from 0.52 to 0.92 
(Figure2A-B) while Iothers increased from 0.20 to 0.40 (Figure 2A-B). Idiff increased 
from 38% to 57% (Figure2A-B).  
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Fig. 2. (A) Iself, Iothers, and Idiff across the range of # PCs. (B) I matrices for original and denoised 
FC matrices. (C) Example original FC matrix versus denoised FC matrix.  

3.2 Diagnostic Identifiability 

WB average(Dg) peaked at n* = 11 components which explained 58.82% of the vari-
ance in the denoised FC data (Figure 3A, Table2). At n* PCs, LMCIAß+ was the only 
group who that did not exhibit significantly increased Dg from the null model. At n* 
components, Di distributions exhibited a significant group effect.  Di decreased with 
diagnostic proximity to ADAß+ (Figure 3B). Between-subject correlation in FC in-
creased from 0.41 to 0.71 after reconstruction with n* PCs (Figure 3B). Of the 9 RSNs, 
the L network exhibited significantly greater DRSN as compared to WB (Table2). Like 
WB, LMCIAß+ was the only group that did not exhibit significantly greater RSN Dg than 
the null model, with the exceptions of SM where EMCIAß+ was additionally not signif-
icantly different from the null model and L where all non-dementia groups exhibited 
greater Dg than the null model (Table2). Eight of eleven PCs were identified as disease 
sensitive in all 9 RSNs and WB (Table 2).  
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Fig. 3. (A-left) Whole brain Dg across all possible number of PCs. (A-right) Individual Di val-
ues at n* = 11 PCs. Distributions showing significant differences (t-test, p < 0.05) are deline-

ated using lines. (B) Denoised I matrix (n = 35 PCs) versus I matrix reconstructed using disease 
sensitive PCs (n* = 11 PCs). (C) Example denoised FC matrix versus FC matrix reconstructed 

using disease sensitive PCs.  

Table 2. Diagnostic Identifiability Summary. 

RSN CNAß- CNAß+ EMCIAß+ LMCIAß+ Mean n	 Var (%)	
WB 11.35** 9.75** 7.85** 2.60 7.89 11	 58.82	
VIS 13.21** 10.33** 8.11** 2.75 8.60 10	 57.23	
SM 9.82** 12.96** 7.30 4.43 8.62 10	 57.26	
DA 12.16** 11.24** 8.09** 3.37 8.71 13	 62.19	
VA 10.74** 11.65** 7.96** 2.33 8.17 10 57.26 
L 17.18** 13.76** 11.97** 6.28** 12.30 8 54.50 
FP 12.07** 10.25** 9.34** 2.70 8.59 11 58.82 

DMN 12.09** 10.20** 8.39** 2.84 8.38 11 58.82 
SUB 14.17** 11.66** 9.93** 4.33 10.02 9 55.78 
CER 13.29** 12.85** 9.72** 5.67 10.38 10 57.26 

**Median outside CI null model, Median outside CI WB mean(Dg) 

Four PCs exhibited significant associations with various neurocognitive do-
main scores (Table 3). Visuospatial domain scores were associated with PC 17 at 1 year 
post imaging and PC 9 at 2 years post imaging. Memory domain scores were associated 
with PC 32 at 1 year post imaging and PC 7 at 2 years post imaging.  Language domain 
scores were associated with PC 23 at 0 year post imaging and PC 7 at 1 years post 
imaging. Finally, PC 17 was associated with executive domain scores at 1 and 2 years 
post imaging.  

Table 3. Associations of n* PC weights with neurocognitive composite domain scores. Step-
wise regressions (F-test, a  < 0.05) were used to assess the relationship of neurocognitive com-

posite domain scores with PC weights, with age, gender, and education starting in the base 
model; p values are reported for the whole model, adjusted-R2 is reported for the model.  

4 Limitations, Future Work, and Conclusions 

We present here a two stage PCA based framework to improve the detection of AD 
signatures in whole-brain functional connectivity. We first use recently proposed test-
retest differential identifiability to denoise subject-level functional connectomes and 

Time 
Points Visuospatial Memory Language Executive 

PC p R2 PC p R2 PC p R2 PC p R2 

0 - - - - - - 23 0.040 0.19 - - - 
1 17 0.001 0.53 32 0.032 0.31 7 0.025 0.31 17 0.004 0.48 
2 9 0.020 0.46 7 0.044 0.20 - - - 17 0.013 0.36 
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consequently reduce dimensionality of functional connectomes. We subsequently in-
troduce and validate the concept of PCA based differential diagnostic identifiability to 
increase AD signal to background in functional connectivity. The result of a significant 
diagnostic group effect in diagnostic differential identifiability shows that FC contains 
AD signature, even at early stages of disease. The finding of increased diagnostic iden-
tifiability in Limbic regions, known to be associated with memory processes and known 
to be affected in AD, further validates this finding. Finally, we show that PC weights 
from AD sensitive principal components are correlated to longitudinal neurocognitive 
outcomes. In addition to the work presented here, we plan to delve further into the 
meaning of the PCs themselves. AD sensitive PCs did not appear to be specific to indi-
vidual RSNs, as the same PCs were consistently AD sensitive across RSNs. Further-
more, several PCs were associated with multiple neurocognitive domains. Therefore, 
AD sensitive PCs may characterize global brain changes related to AD.  However, spa-
tial representation of PCs and relationship of PCs with network properties need to be 
explored to further assess this. Finally, to further validate these promising results, this 
methodology needs to be applied to a larger cohort. With ADNI3 data becoming avail-
able (~300 subjects already scanned), on which all subjects underwent resting state 
fMRI, we will be able to further validate findings and further improve identification 
and characterization of AD sensitive PCs based on whole brain functional connectomes. 
This dual decomposition/reconstruction framework makes forward progress in exploit-
ing the clinical potential of functional connectivity based biomarkers.  
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