Skip to main content

Gaze-Dependent Screen Space Ambient Occlusion

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11114))

Included in the following conference series:

  • 1358 Accesses

Abstract

The screen space ambient occlusion (SSAO) is a fast global illumination technique, which approximates interreflections between rendered objects. Due to its simplicity, it is often implemented in commercial computer games. However, despite the fact that SSAO calculations take a few milliseconds per frame, a significant computation load is added to the total rendering time. In this work we propose a technique, which accelerates the SSAO calculations using information about observer’s gaze direction captured by the eye tracker. The screen region surrounding the observer’s gaze position is rendered with maximum quality, which is reduced gradually for higher eccentricities. The SSAO quality is varying by changing the number of samples that are used to approximate the SSAO occlusion shadows. The reduced sampling results in almost two-fold acceleration of SSAO with negligible deterioration of the image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Stanford dragon is a test model created with a Cyberware 3030 Model Shop (MS) Color 3D Scanner at Stanford University (100040 triangles).

  2. 2.

    The Sibenik cathedral is a project by Marko Dabrovic (www.RNA.HR, 80841 triangles).

References

  1. Akenine-Möller, T., Haines, E., Hoffman, N.: Real-Time Rendering, 3rd edn. A. K. Peters Ltd., Natick (2008)

    Google Scholar 

  2. Barten, P.G.J.: Contrast Sensitivity of the Human Eye and Its Effects on Iimage Quality. SPIE Press, Bellingham (1999)

    Book  Google Scholar 

  3. Bunnell, M.: Dynamic ambient occlusion and indirect lighting. In: GPU Gems 2. Addison Wesley (2005)

    Google Scholar 

  4. Duchowski, A.T.: Eye Tracking Methodology: Theory and Practice, 2nd edn. Springer, London (2007). https://doi.org/10.1007/978-1-84628-609-4

    Book  MATH  Google Scholar 

  5. Eli Peli, J.Y., Goldstein, R.B.: Image invariance with changes in size: the role of peripheral contrast thresholds. JOSA A 8(11), 1762 (1991)

    Article  Google Scholar 

  6. Guenter, B., Finch, M., Drucker, S., Tan, D., Snyder, J.: Foveated 3D graphics. ACM Trans. Graph. 31(6), 164:1–164:10 (2012)

    Article  Google Scholar 

  7. Hegeman, K., Premoze, S., Ashikhmin, M., Drettakis, G.: Approximate ambient occlusion for trees. In: Proceedings of ACM Symposium in Interactive 3D Graphics and Games (I3D 2006), pp. 41–48 (2006)

    Google Scholar 

  8. Loschky, L.C., McConkie, G.W., Yang, J., Miller, M.E.: The limits of visual resolution in natural scene viewing. Vis. Cogn. 12, 1057–1092 (2005)

    Article  Google Scholar 

  9. Mantiuk, R., Janus, S.: Gaze-dependent ambient occlusion. In: Bebis, G., et al. (eds.) ISVC 2012. LNCS, vol. 7431, pp. 523–532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33179-4_50

    Chapter  Google Scholar 

  10. Mantiuk, R.: Gaze-dependent tone mapping for HDR video. In: Chalmers, A., Campisi, P., Shirley, P., Olaizola, I. (eds.) High Dynamic Range Video Concepts, Technologies and Applications, vol. 10, pp. 189–199. Academic Press (2016)

    Google Scholar 

  11. Mantiuk, R.: Accuracy of high-end and self-build eye-tracking systems. In: Kobayashi, S., Piegat, A., Pejaś, J., El Fray, I., Kacprzyk, J. (eds.) ACS 2016. AISC, vol. 534, pp. 216–227. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48429-7_20

    Chapter  Google Scholar 

  12. Mantiuk, R., Bazyluk, B., Mantiuk, R.K.: Gaze-driven object tracking for real time rendering. Comput. Graph. Forum 32(2), 163–173 (2013). https://doi.org/10.1111/cgf.12036, http://diglib.eg.org/EG/CGF/volume32/issue2/v32i2pp163-173.pdf

    Article  Google Scholar 

  13. Mantiuk, R., Markowski, M.: Gaze-dependent tone mapping. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 426–433. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39094-4_48

    Chapter  Google Scholar 

  14. Mantiuk, R.K., Tomaszewska, A., Mantiuk, R.: Comparison of four subjective methods for image quality assessment. Comput. Graph. Forum 31(8), 2478–2491 (2012)

    Article  Google Scholar 

  15. Mittring, M.: Finding next gen-cryengine 2. In: SIGGRAPH 2007 Advanced Real-Time Rendering in 3D Graphics and Games Course Notes (2007)

    Google Scholar 

  16. Murphy, H.A., Duchowski, A.T., Tyrrell, R.A.: Hybrid image/model-based gaze-contingent rendering. ACM Trans. Appl. Percept. (TAP) 5(4), 22 (2009)

    Article  Google Scholar 

  17. Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 Symposium on Eye Tracking Research & Applications (ETRA), New York, pp. 71–78 (2000)

    Google Scholar 

  18. SMI: RED250 Technical Specification, sensoMotoric Instruments GmbH (2009)

    Google Scholar 

  19. Stengel, M., Magnor, M.: Gaze-contingent computational displays: boosting perceptual fidelity. IEEE Signal Process. Mag. 33(5), 139–148 (2016)

    Article  Google Scholar 

  20. Vardis, K., Papaioannou, G., Gaitatzes, A.: Multi-view ambient occlusion with importance sampling. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D 2013, pp. 111–118 (2013)

    Google Scholar 

  21. Yang, J., Coia, T., Miller, M.: Subjective evaluation of retinal-dependent image degradations. In: Proceedings of PICS 2001: Image Processing, Image Quality, Image Capture Systems, pp. 142–147. Society for Imaging Science and Technology (2001)

    Google Scholar 

  22. Yang, J., Qi, X., Makous, W.: Zero frequency masking and a model of contrast sensitivity. Vis. Res. 35, 1965 (1995)

    Article  Google Scholar 

  23. Zhukov, S., Iones, A., Kronin, G.: An ambient light illumination model. In: Drettakis, G., Max, N. (eds.) Rendering Techniques ’98. Eurographics, pp. 45–56. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-6453-2_5

    Chapter  Google Scholar 

Download references

Acknowledgement

In this work we used partial results of Andrzej Czajkowski master thesis. We would like to thank you our former student for his excellent work. The project was partially funded by the Polish National Science Centre (grant number DEC-2013/09/B/ST6/02270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radosław Mantiuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mantiuk, R. (2018). Gaze-Dependent Screen Space Ambient Occlusion. In: Chmielewski, L., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A., Petkov, N. (eds) Computer Vision and Graphics. ICCVG 2018. Lecture Notes in Computer Science(), vol 11114. Springer, Cham. https://doi.org/10.1007/978-3-030-00692-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00692-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00691-4

  • Online ISBN: 978-3-030-00692-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics