Skip to main content

Embedding Spatial Context into Spectral Angle Based Nonlinear Mapping for Hyperspectral Image Analysis

  • Conference paper
  • First Online:
Book cover Computer Vision and Graphics (ICCVG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11114))

Included in the following conference series:

Abstract

Due to the high dimensionality and redundancy of hyperspectral images, an important step in analyzing such images is to reduce the dimensionality. In this paper, we propose and study the dimensionality reduction technique, which is based on the approximation of spectral angle mapper (SAM) measures by Euclidean distances. The key feature of the proposed method is the integration of spatial information into the dissimilarity measure. The experiments performed on the open hyperspectral datasets showed that the developed method can be used in the analysis of hyperspectral images.

The reported study was funded by RFBR according to the research project no. 18-07-01312-a.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lunga, D., Prasad, S., Crawford, M., Ersoy, O.: Manifold-learning-based feature extraction for classification of hyperspectral data. IEEE Sig. Process. Mag. 31(1), 55–66 (2014)

    Article  Google Scholar 

  2. Richards, J.A., Jia, X., Ricken, D.E., Gessner, W.: Remote Sensing Digital Image Analysis: An Introduction. Springer, Heidelberg (1999)

    Book  Google Scholar 

  3. Wang, J., Chang, C.-I.: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–1600 (2006)

    Article  Google Scholar 

  4. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  5. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv. Neural Inf. Process. Syst. 14, 586–691 (2001)

    Google Scholar 

  6. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J. Sci. Comput. 26(1), 313–338 (2005)

    Article  Google Scholar 

  7. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  8. Demartines, P., Hérault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Netw. 8(1), 148–154 (1997)

    Article  Google Scholar 

  9. Sammon Jr., J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. C–18(5), 401–409 (1969)

    Article  Google Scholar 

  10. Bachmann, C.M., Ainsworth, T.L., Fusina, R.A.: Improved manifold coordinate representations of large-scale hyperspectral scenes. IEEE Trans. Geosci. Remote Sens. 44(10), 2786–2803 (2006)

    Article  Google Scholar 

  11. Journaux, L., Foucherot, I., Gouton, P.: Nonlinear reduction of multispectral images by curvilinear component analysis: application and optimization. In: International Conference on CSIMTA 2004 (2004)

    Google Scholar 

  12. Lennon, M., Mercier, G., Mouchot, M., Hubert-Moy, L.: Curvilinear component analysis for nonlinear dimensionality reduction of hyperspectral images. Proc. SPIE 4541, 157–168 (2002)

    Article  Google Scholar 

  13. Kim, D.H., Finkel, L.H.: Hyperspectral image processing using locally linear embedding. In: First International IEEE EMBS Conference on Neural Engineering, pp. 316–319 (2003)

    Google Scholar 

  14. Shen-En, Q., Guangyi, C.: A new nonlinear dimensionality reduction method with application to hyperspectral image analysis. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 270–273 (2007)

    Google Scholar 

  15. Yan, L., Roy, D.P.: Improved time series land cover classification by missing observation- adaptive nonlinear dimensionality reduction. Remote Sens. Environ. 158, 478–491 (2015)

    Article  Google Scholar 

  16. Sun, W., et al.: Nonlinear dimensionality reduction via the ENH-LTSA method for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(2), 375–388 (2014). Artcle No. 6419851

    Article  Google Scholar 

  17. Hong, D.F., Yokoya, N., Zhu, X.X.: Local manifold learning with robust neighbors selection for hyperspectral dimensionality reduction. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 40–43, November 2016. Article No. 7729001

    Google Scholar 

  18. Myasnikov, E.: Evaluation of stochastic gradient descent methods for nonlinear mapping of hyperspectral data. In: Campilho, A., Karray, F. (eds.) ICIAR 2016. LNCS, vol. 9730, pp. 276–283. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41501-7_31

    Chapter  Google Scholar 

  19. Kruse, F.A., et al.: The Spectral Image Processing System (SIPS) interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44, 145–163 (1993)

    Article  Google Scholar 

  20. Bachmann, C.M., Ainsworth, T.L., Fusina, R.A.: Exploiting manifold geometry in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 43(3), 441–454 (2005)

    Article  Google Scholar 

  21. Yan, L., Niu, X.: Spectral-angle-based Laplacian Eigenmaps for nonlinear dimensionality reduction of hyperspectral imagery. Photogramm. Eng. Remote Sens. 80(9), 849–861 (2014)

    Article  Google Scholar 

  22. Myasnikov, E.: Nonlinear mapping based on spectral angle preserving principle for hyperspectral image analysis. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10425, pp. 416–427. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64698-5_35

    Chapter  Google Scholar 

  23. Wang, L., Shi, C., Diao, C., Ji, W., Yin, D.: A survey of methods incorporating spatial information in image classification and spectral unmixing. Int. J. Remote Sens. 37(16), 3870–3910 (2016)

    Article  Google Scholar 

  24. Borhani, M., Ghassemian, H.: Kernel multivariate spectral-spatial analysis of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2418–2426 (2015). Article No. 7056457

    Article  Google Scholar 

  25. Sun, W., Liu, C., Li, W.: Hyperspectral imagery classification using the combination of improved Laplacian eigenmaps and improved k-nearest neighbor classifier. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics Inf. Sci. Wuhan Univ. 40(9), 1151–1156 (2015)

    Google Scholar 

  26. Myasnikov, E.: Exploiting spatial context in nonlinear mapping of hyperspectral image data. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10485, pp. 180–190. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68548-9_17

    Chapter  Google Scholar 

  27. Hyperspectral Remote Sensing Scenes. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote Sensing Scenes

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Myasnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Myasnikov, E. (2018). Embedding Spatial Context into Spectral Angle Based Nonlinear Mapping for Hyperspectral Image Analysis. In: Chmielewski, L., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A., Petkov, N. (eds) Computer Vision and Graphics. ICCVG 2018. Lecture Notes in Computer Science(), vol 11114. Springer, Cham. https://doi.org/10.1007/978-3-030-00692-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00692-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00691-4

  • Online ISBN: 978-3-030-00692-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics