Skip to main content

Unsupervised Caries Detection in Non-standardized Periapical Dental X-Rays

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11114))

Abstract

Dental caries are currently one of the most prevalent diseases in the modern world. Early detection and diagnosis of the disease is the best treatment available to dental healthcare professionals and is crucial in preventing advanced stages of decay. This paper presents an effective model for caries detection across a variety of non-uniform X-rays using individual tooth segmentation, boundary detection and caries detection through image analysis techniques. The tooth segmentation is implemented using integral projection and an analytical division algorithm. The boundary detection is implemented through the use of top and bottom hat transformations and active contours. Finally the caries detection was achieved through the use of blob detection and cluster analysis on suspected carious regions. The cluster analysis generates its results relative to the image being analyzed and as such, forms the unsupervised evaluation approach of this paper. The viability of this unsupervised learning model, and its relative effectiveness of accurately diagnosing dental caries when compared to current systems, is indicated by the results detailed in this paper, with the proposed model achieving a 96% correct diagnostic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vos, T., et al.: Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859), 2163–2196 (2013)

    Google Scholar 

  2. Booshehry, M.Z., Fasihinia, H., Khalesi, M., Gholami, L.: Dental caries diagnostic methods. DJH 2(1), 1–12 (2011)

    Google Scholar 

  3. Amaechi, B.T.: Emerging technologies for diagnosis of dental caries: the road so far. J. Appl. Phys. 105(10), 102047 (2009)

    Article  Google Scholar 

  4. Noor, N.M., Khalid, N.E.A., Ali, M.H., Numpang, A.D.A.: Fish bone impaction using Adaptive Histogram Equalization (AHE). In: 2010 Second International Conference on Computer Research and Development, pp. 163–167. IEEE (2010)

    Google Scholar 

  5. Sakata, M., Ogawa, K.: Noise reduction and contrast enhancement for small-dose x-ray images in wavelet domain. In: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 2924–2929. IEEE (2009)

    Google Scholar 

  6. Ahmad, S.A., Taib, M.N., Khalid, N.E.A., Taib, H.: An analysis of image enhancement techniques for dental x-ray image interpretation. Int. J. Mach. Learn. Comput. 2(3), 292–297 (2012)

    Article  Google Scholar 

  7. Bharathi, K.K., Muruganand, S., Periasamy, A.: Digital image processing based noise reduction analysis of digital dental xray image using matlab. J. NanoScience NanoTechnology 2(1), 198–203 (2014)

    Google Scholar 

  8. Nomir, O., Abdel-Mottaleb, M.: A system for human identification from x-ray dental radiographs. Pattern Recogn. 38(8), 1295–1305 (2005)

    Article  Google Scholar 

  9. Hu, S., Hoffman, E.A., Reinhardt, J.M.: Automatic lung segmentation for accurate quantitation of volumetric x-ray CT images. IEEE Trans. Med. Imaging 20(6), 490–498 (2001)

    Article  Google Scholar 

  10. Nomir, O., Abdel-Mottaleb, M.: Human identification from dental x-ray images based on the shape and appearance of the teeth. IEEE Trans. Inf. Forensics Secur. 2(2), 188–197 (2007)

    Article  Google Scholar 

  11. Lin, P.-L., Lai, Y.-H., Huang, P.-W.: Dental biometrics: human identification based on teeth and dental works in bitewing radiographs. Pattern Recogn. 45(3), 934–946 (2012)

    Article  Google Scholar 

  12. Jain, A.K., Chen, H.: Matching of dental x-ray images for human identification. Pattern Recogn. 37(7), 1519–1532 (2004)

    Article  Google Scholar 

  13. Frejlichowski, D., Wanat, R.: Automatic Segmentation of digital orthopantomograms for forensic human identification. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011. LNCS, vol. 6979, pp. 294–302. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24088-1_31

    Chapter  Google Scholar 

  14. Zhou, J., Abdel-Mottaleb, M.: A content-based system for human identification based on bitewing dental x-ray images. Pattern Recogn. 38(11), 2132–2142 (2005)

    Article  Google Scholar 

  15. Oliveira, J.: Caries Detection in Panoramic Dental X-ray Images (2009)

    Google Scholar 

  16. Rad, A.E., Mohd Rahim, M.S., Rehman, A., Altameem, A., Saba, T.: Evaluation of current dental radiographs segmentation approaches in computer-aided applications. IETE Tech. Rev. 30(3), 210–222 (2013)

    Article  Google Scholar 

  17. Solanki, A., Jain, K., Desai, N.: ISEF based identification of RCT/filling in dental caries of decayed tooth. Int. J. Image Process. (IJIP) 7(2), 149–162 (2013)

    Google Scholar 

  18. Oprea, S., Marinescu, C., Lita, I., Jurianu, M., Visan, D.A., Cioc, I.B.: Image processing techniques used for dental x-ray image analysis. In: 2008 31st International Spring Seminar on Electronics Technology, pp. 125–129. IEEE (2008)

    Google Scholar 

  19. Zhang, H., Boyles, M.J., Ruan, G., Li, H., Shen, H., Ando, M.: Xsede-enabled high-throughput lesion activity assessment. In: Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery, p. 10. ACM (2013)

    Google Scholar 

  20. Yoon, J.H., Ro, Y.M.: Enhancement of the contrast in mammographic images using the homomorphic filter method. IEICE Trans. Inf. Syst. 85(1), 298–303 (2002)

    Google Scholar 

  21. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)

    Article  Google Scholar 

  22. Chu, S.J.: Range and mean distribution frequency of individual tooth width of the maxillary anterior dentition. Pract. Proced. Aesthetic Dent. 19(4), 209 (2007)

    Google Scholar 

  23. Vellini-Ferreira, F., Cotrim-Ferreira, F.A., Ribeiro, J.A., Ferreira-Santos, R.I.: Mapping of proximal enamel thickness in permanent teeth. Braz. J. Oral Sci. 11(4), 481–485 (2012)

    Google Scholar 

  24. Scharr, H.: Optimal operators in digital image processing, Ph.D. dissertation (2000)

    Google Scholar 

  25. Said, E.H., Nassar, D.E.M., Fahmy, G., Ammar, H.H.: Teeth segmentation in digitized dental x-ray films using mathematical morphology. IEEE Trans. Inf. Forensics Secur. 1(2), 178–189 (2006)

    Article  Google Scholar 

  26. Shah, S., Abaza, A., Ross, A., Ammar, H.: Automatic tooth segmentation using active contour without edges. In: 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference, pp. 1–6. IEEE (2006)

    Google Scholar 

  27. Lai, Y.H., Lin, P.L.: Effective segmentation for dental x-ray images using texture-based fuzzy inference system. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 936–947. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88458-3_85

    Chapter  Google Scholar 

  28. Tracy, K.D., et al.: Utility and effectiveness of computer-aided diagnosis of dental caries. Gen. Dent. 59(2), 136–144 (2010)

    Google Scholar 

  29. Dykstra, B.: Interproximal caries detection: how good are we? Dent. Today 27(4), 144–146 (2008)

    Google Scholar 

  30. Valizadeh, S., Goodini, M., Ehsani, S., Mohseni, H., Azimi, F., Bakhshandeh, H.: Designing of a computer software for detection of approximal caries in posterior teeth. Iran. J. Radiol. 12(4) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serestina Viriri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Osterloh, D., Viriri, S. (2018). Unsupervised Caries Detection in Non-standardized Periapical Dental X-Rays. In: Chmielewski, L., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A., Petkov, N. (eds) Computer Vision and Graphics. ICCVG 2018. Lecture Notes in Computer Science(), vol 11114. Springer, Cham. https://doi.org/10.1007/978-3-030-00692-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00692-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00691-4

  • Online ISBN: 978-3-030-00692-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics