Skip to main content

A Fast Algorithm for Quaternion-Based 4D Rotation

  • Conference paper
  • First Online:
  • 1347 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11114))

Abstract

In this work, a fast algorithm for quaternion-based 4D rotation is presented which reduces the number of underlying real multiplications. Performing a quaternion-based rotation using rotation matrix takes 32 multiplications and 60 additions of real numbers while the proposed algorithm can compute the same result in only 16 real multiplications (or multipliers - in hardware implementation case) and 56 additions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yefremov, A.P.: Quaternions: algebra, geometry and physical theories. Hypercomplex Numbers Geom. Phys. 1, 104–119 (2004)

    Google Scholar 

  2. Hu, C., Meng, M.Q.-H., Mandal, M., Liu, P.X.: Robot rotation decomposition using quaternions. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 1158–1163. IEEE Press (2006). https://doi.org/10.1109/ICMA.2006.257789

  3. Roberts, G.N., Sutton, R., (eds.): Advances in Unmanned Marine Vehicles. IEEE Control Engineering Series, vol. 69, London (2006)

    Google Scholar 

  4. Fresk, E., Nikolakopoulos, G.: Full quaternion based attitude control for a quadrotor. In: Proceedings of European Control Conference (ECC), pp. 3864–3869. IEEE Press (2013)

    Google Scholar 

  5. Bülow, T., Sommer, G.: Hypercomplex signals - a novel extension of the analytic signal to the multidimensional case. IEEE Trans. Sign. Proc. 49, 2844–2852 (2001). https://doi.org/10.1109/78.960432

    Article  MathSciNet  MATH  Google Scholar 

  6. Sangwine, S.J., Le Bihan, N.: Hypercomplex analytic signals: extension of the analytic signal concept to complex signals. In: Proceedings of 15th European Signal Processing Conference (EUSIPCO), pp. 621–624. IEEE Press (2007). https://doi.org/10.1109/ICIP.2001.959190

  7. Alfsmann, D., Göckler, H.G., Sangwine, S.J., Ell, T.A.: Hypercomplex algebras in digital signal processing: benefits and drawbacks (Tutorial). In: Proceedings of 15th European Signal Processing Conference (EUSIPCO), pp. 1322–1326. IEEE Press (2007)

    Google Scholar 

  8. Pei, S.-C., Ding, J.-J., Chang, J.-H.: Color pattern recognition by quaternion correlation. In: Proceedings of IEEE International Conference on Image Processing, pp. 847–849. IEEE Press (2001). https://doi.org/10.1109/ICIP.2001.959190

  9. Pei, S.-C., Ding, J.-J., Chang, J.-H.: Efficient implementation of quaternion fourier transform, convolution, and correlation by 2-D complex FFT. IEEE Trans. Sign. Proc. 49, 2783–2797 (2001). https://doi.org/10.1109/78.960426

    Article  MathSciNet  MATH  Google Scholar 

  10. Ell, T.A.: Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems. In: Proceedings of the 32nd IEEE Conference on Decision and Control, pp. 1830–1841. IEEE Press (1993). https://doi.org/10.1109/CDC.1993.325510

  11. Witten, B., Shragge, J.: Quaternion-based signal processing. In: Proceedings of 2006 SEG Annual Meeting, pp. 2862–2865. Society of Exploration Geophysicists Press (2006)

    Google Scholar 

  12. Bayro-Corrochano, E.: The theory and use of the quaternion wavelet transform. J. Math. Imaging Vis. 24, 19–35 (2006). https://doi.org/10.1007/s10851-005-3605-3

    Article  MathSciNet  Google Scholar 

  13. Vince, J.: Quaternions for Computer Graphics. Springer, London (2011). https://doi.org/10.1007/978-0-85729-760-0

    Book  MATH  Google Scholar 

  14. Hanson, A.J.: Visualizing Quaternions. The Morgan Kaufmann Series in Interactive 3D Technology. Elsevier Inc., New York (2006)

    Google Scholar 

  15. Wysocki, B.J., Wysocki, T.A., Seberry, J.: Modeling dual polarization wireless fading channels using quaternions. In: Joint IST Workshop on Mobile Future, 2006 and the Symposium on Trends in Communications. SympoTIC 2006, pp. 68–71. IEEE Press (2006). https://doi.org/10.1109/TIC.2006.1708024

  16. Malekian, E., Zakerolhosseini, A., Mashatan, A.: QTRU: quaternionic version of the NTRU public-key cryptosystems. ISC Int. J. Inf. Secur. 3, 29–42 (2011)

    Google Scholar 

  17. Mebius, J.E.: A matrix-based proof of the quaternion representation theorem for four-dimensional rotations. arXiv:math/0501249 (2005)

  18. Weiner, J.L., Wilkens, G.R.: Quaternions and rotations in \(E^4\). Am. Math. Monthly 112, 69–76 (2005)

    MATH  Google Scholar 

  19. Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms. Springer, Switzerland (2006). https://doi.org/10.1007/978-3-319-01851-5

    Book  Google Scholar 

  20. Cariow, A.: Strategies for the synthesis of fast algorithms for the computation of the matrix-vector products. J. Sig. Process. Theor. Appl. 3, 1–19 (2014). https://doi.org/10.7726/jspta.2014.1001

    Article  Google Scholar 

  21. Steeb, W.-H., Hardy, Y.: Matrix Calculus and Kronecker Product: A Practical Approach to Linear and Multilinear Algebra. World Scientific Publishing Company (2011)

    Google Scholar 

  22. Ţariova, G., Ţariov, A.: Aspekty algorytmiczne redukcji liczby bloków mnożących w układzie do obliczania iloczynu dwóch kwaternionów [Algorithmic aspects of multiplication block number reduction in a two quaternion hardware multiplier]. Pomiary Automatyka Kontrola 56, 688–690 (2010). (in Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Majorkowska-Mech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cariow, A., Cariowa, G., Majorkowska-Mech, D. (2018). A Fast Algorithm for Quaternion-Based 4D Rotation. In: Chmielewski, L., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A., Petkov, N. (eds) Computer Vision and Graphics. ICCVG 2018. Lecture Notes in Computer Science(), vol 11114. Springer, Cham. https://doi.org/10.1007/978-3-030-00692-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00692-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00691-4

  • Online ISBN: 978-3-030-00692-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics