## **Advanced Information and Knowledge Processing**

#### Series editors

Lakhmi C. Jain Bournemouth University, Poole, UK, and University of South Australia, Adelaide, Australia

Xindong Wu University of Vermont

Information systems and intelligent knowledge processing are playing an increasing role in business, science and technology. Recently, advanced information systems have evolved to facilitate the co-evolution of human and information networks within communities. These advanced information systems use various paradigms including artificial intelligence, knowledge management, and neural science as well as conventional information processing paradigms. The aim of this series is to publish books on new designs and applications of advanced information and knowledge processing paradigms in areas including but not limited to aviation, business, security, education, engineering, health, management, and science. Books in the series should have a strong focus on information processing—preferably combined with, or extended by, new results from adjacent sciences. Proposals for research monographs, reference books, coherently integrated multi-author edited books, and handbooks will be considered for the series and each proposal will be reviewed by the Series Editors, with additional reviews from the editorial board and independent reviewers where appropriate. Titles published within the Advanced Information and Knowledge Processing series are included in Thomson Reuters' Book Citation Index.

More information about this series at http://www.springer.com/series/4738

Zhengming Ding · Handong Zhao Yun Fu

# Learning Representation for Multi-View Data Analysis

Models and Applications



Zhengming Ding Indiana University-Purdue University Indianapolis Indianapolis, IN, USA

Handong Zhao Adobe Research San Jose, CA, USA Yun Fu Northeastern University Boston, MA, USA

ISSN 1610-3947 ISSN 2197-8441 (electronic) Advanced Information and Knowledge Processing ISBN 978-3-030-00733-1 ISBN 978-3-030-00734-8 (eBook) https://doi.org/10.1007/978-3-030-00734-8

Library of Congress Control Number: 2018961715

#### © Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

#### **Preface**

This book equips readers to handle complex multi-view data representation, centered around several major visual applications, sharing many tips and insights through a unified learning framework. This framework is able to model most existing multi-view learning and domain adaptation, enriching readers' understanding from their similarity and differences based on data organization and problem settings, as well as the research goal.

A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced, and large-scale multi-view learning. Learning representation for multi-view data analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, Web mining, and computer vision.

This book consists of ten chapters. Chapter 1 introduces the background and unified model of multi-view data representations. Part I, which includes Chaps. 2–4, introduces the unsupervised learning for multi-view data analysis. Chapter 2 presents the unsupervised representation learning methods for two multi-view scenarios. One is considering various data sources as multiple views. The other is considering different splits of one source data as multiple views. Chapter 3 addresses the more challenging and practical incomplete multi-view clustering problem. Chapter 4 introduces a novel outlier detection problem in multi-view setting and correspondingly proposes a multi-view outlier detection framework.

Part II, which includes Chaps. 5 and 6, presents the multi-view data analysis for supervised multi-view classification. Chapter 5 presents two multi-view classification models—one is dual low-rank decomposition multi-view subspace and the other is cross-view auto-encoder. Chapter 6 shows an adaptive latent semantic representation model in a sparse dictionary learning scheme for zero-shot learning (a special case of multi-view classification problem). Part III, which includes Chaps. 7–10, presents the multi-view data analysis for domain adaptation. Chapter 7 lists the missing modality transfer learning model to solve the problem when target modality is not available in the training stage. Chapter 8 discusses the multi-source

vi Preface

transfer learning problem when all the sources are incomplete. Chapter 9 proposes three deep domain adaptation models to address the challenge where target data has limited or no label. Following this, Chap. 10 provides a deep domain generalization model aiming to deal with the target domain that is not available in the training stage while only with multiple related sources at hand.

In particular, this book can be used by these audiences in the background of computer science, information systems, data science, statistics, and mathematics. Other potential audiences can be attracted from broad fields of science and engineering since this topic has potential applications in many disciplines.

We would like to thank our collaborators Ming Shao, Hongfu Liu, and Shuyang Wang. We would also like to thank editor Helen Desmond from Springer for the help and support.

Indianapolis, IN, USA San Jose, CA, USA Boston, MA, USA September 2018 Zhengming Ding Handong Zhao Yun Fu

### **Contents**

| 1   | Introduction |                                       |                                                 |            |  |  |
|-----|--------------|---------------------------------------|-------------------------------------------------|------------|--|--|
|     | 1.1          | What Are Multi-view Data and Problem? |                                                 |            |  |  |
|     | 1.2          | A Unified Perspective                 |                                                 |            |  |  |
|     | 1.3          |                                       |                                                 |            |  |  |
| Par | t I U        | nsuperv                               | vised Multi-view Learning                       |            |  |  |
| 2   | Multi        | i-view C                              | Clustering with Complete Information            | 9          |  |  |
|     | 2.1          |                                       | Multi-view Clustering                           | 9          |  |  |
|     |              | 2.1.1                                 | Overview                                        | 9          |  |  |
|     |              | 2.1.2                                 | Deep Semi-NMF Formulation                       | 11         |  |  |
|     |              | 2.1.3                                 | Experiments on Face Benchmarks                  | 16         |  |  |
|     |              | 2.1.4                                 | Summary                                         | 22         |  |  |
|     | 2.2          | Ensem                                 | ble Subspace Clustering                         | 22         |  |  |
|     |              | 2.2.1                                 | Background                                      | 22         |  |  |
|     |              | 2.2.2                                 | Ensemble Formulation with Sparse and Block-Wise |            |  |  |
|     |              |                                       | Constraints                                     | 26         |  |  |
|     |              | 2.2.3                                 | Experiments on Face, Object, Motion Benchmarks  | 34         |  |  |
|     |              | 2.2.4                                 | Summary                                         | 47         |  |  |
|     | Refer        | ences                                 |                                                 | 47         |  |  |
| 3   | Multi        | i-view C                              | Clustering with Partial Information             | 51         |  |  |
|     | 3.1          | Overvi                                | ew                                              | 51         |  |  |
|     | 3.2          | Incom                                 | plete Multi-view Clustering                     | <b>5</b> 3 |  |  |
|     |              | 3.2.1                                 | Incomplete Case Formulation                     | <b>5</b> 3 |  |  |
|     |              | 3.2.2                                 | Complete Graph Laplacian                        | 54         |  |  |
|     |              | 3.2.3                                 | Optimization                                    | 55         |  |  |
|     |              | 3 2 4                                 | Complexity Analysis                             | 57         |  |  |

viii Contents

|     | 3.3   | Experiment on Synthetic and Real-World Data         | 58  |  |  |
|-----|-------|-----------------------------------------------------|-----|--|--|
|     |       | 3.3.1 Experimental Result                           | 59  |  |  |
|     |       | 3.3.2 Convergence Study                             | 62  |  |  |
|     |       | 3.3.3 Parameter Study                               | 63  |  |  |
|     | 3.4   | Summary                                             | 64  |  |  |
|     | Refer | rences                                              | 64  |  |  |
| 4   | Mult  | i-view Outlier Detection                            | 67  |  |  |
|     | 4.1   | Introduction                                        | 67  |  |  |
|     | 4.2   | Related Works                                       | 69  |  |  |
|     | 4.3   | Multi-view Outlier Detection Method                 | 70  |  |  |
|     |       | 4.3.1 The Proposed Consensus Based Algorithm        | 70  |  |  |
|     |       | 4.3.2 Outlier Measurement Criterion                 | 72  |  |  |
|     | 4.4   | Optimization                                        | 73  |  |  |
|     |       | 4.4.1 Algorithm Derivation                          | 73  |  |  |
|     |       | 4.4.2 Complexity Analysis                           | 76  |  |  |
|     | 4.5   | Experiments                                         | 76  |  |  |
|     |       | 4.5.1 Synthetic Data                                | 77  |  |  |
|     |       | 4.5.2 Real-World Data                               | 78  |  |  |
|     |       | 4.5.3 Analytical Experiments                        | 85  |  |  |
|     |       | 4.5.4 Application on Saliency Detection             | 90  |  |  |
|     |       | 4.5.5 Application on Face Reconstruction            | 91  |  |  |
|     | 4.6   | Summary                                             | 92  |  |  |
|     | Refer | rences                                              | 93  |  |  |
| _   |       |                                                     |     |  |  |
| Pai | rt II | Supervised Multi-view Classification                |     |  |  |
| 5   |       | i-view Transformation Learning                      | 99  |  |  |
|     | 5.1   | Dual Low-Rank Decomposition for Multi-view Learning | 99  |  |  |
|     |       | 5.1.1 Background                                    | 100 |  |  |
|     |       | 5.1.2 Robust Multi-view Subspace Learning           | 101 |  |  |
|     |       | 5.1.3 Experiments                                   | 107 |  |  |
|     | 5.2   | Coupled Marginalized Auto-encoders for Cross-domain |     |  |  |
|     |       | Multi-view Learning                                 | 111 |  |  |
|     |       | 5.2.1 Introduction                                  | 111 |  |  |
|     |       | 5.2.2 The Proposed Algorithm                        | 113 |  |  |
|     |       | 5.2.3 Experiments                                   | 118 |  |  |
|     | 5.3   | Summary                                             | 123 |  |  |
|     | Refer | rences                                              | 124 |  |  |
| 6   | Zero  | -Shot Learning                                      | 127 |  |  |
|     | 6.1   | Background                                          | 127 |  |  |
|     | 6.2   | Overview                                            |     |  |  |
|     | 6.3   | The Proposed Algorithm                              | 130 |  |  |

Contents ix

|      |      | 6.3.1     | Learning Latent Semantic Dictionary          | 131 |
|------|------|-----------|----------------------------------------------|-----|
|      |      | 6.3.2     | Adaptive Graph Guided Latent Semantics       | 132 |
|      |      | 6.3.3     | Optimization                                 | 133 |
|      |      | 6.3.4     | ZSL with Fast Inference                      | 135 |
|      | 6.4  | Experi    | ment                                         | 136 |
|      |      | 6.4.1     | Dataset & Experimental Setting               | 136 |
|      |      | 6.4.2     | Zero-Shot Classification                     | 137 |
|      |      | 6.4.3     | Zero-Shot Retrieval                          | 138 |
|      |      | 6.4.4     | Empirical Analysis                           | 140 |
|      | 6.5  | Summa     | ary                                          | 142 |
|      | Refe | rences    |                                              | 142 |
|      |      |           |                                              |     |
| Part | III  | Transfe   | er Learning                                  |     |
| 7    | Miss | ing Mod   | lality Transfer Learning                     | 147 |
|      | 7.1  |           | round                                        | 147 |
|      |      | 7.1.1     | Overview                                     | 149 |
|      | 7.2  | Transfe   | er Learning via Latent Low-Rank Constraint   | 150 |
|      |      | 7.2.1     | Conference Version Revisit                   | 150 |
|      |      | 7.2.2     | Transfer Learning with Dictionary Constraint | 151 |
|      |      | 7.2.3     | Low-Rank Transfer with Latent Factor         | 152 |
|      | 7.3  | Experi    | ments                                        | 162 |
|      |      | 7.3.1     | Datasets and Experiments Setting             | 163 |
|      |      | 7.3.2     | Convergence and Property in Two Directions   | 164 |
|      |      | 7.3.3     | Recognition Results                          | 166 |
|      |      | 7.3.4     | Parameter Property and Training Time         | 170 |
|      | 7.4  | Summa     | ary                                          | 172 |
|      | Refe | rences    |                                              | 172 |
| 8    | Mult | ti-source | Transfer Learning                            | 175 |
|      | 8.1  |           | round                                        | 175 |
|      | 8.2  |           | ew                                           | 177 |
|      | 8.3  |           | plete Multi-source Transfer Learning         | 178 |
|      |      | 8.3.1     | Effective Incomplete Multi-source Alignment  | 179 |
|      |      | 8.3.2     | Cross-Domain Knowledge Transfer              | 180 |
|      |      | 8.3.3     | Cross-Source Knowledge Alignment             | 183 |
|      |      | 8.3.4     | Solving Objective Function                   | 185 |
|      |      | 8.3.5     | Complexity Analysis                          | 189 |
|      |      | 8.3.6     | Generalization Bound Analysis                | 189 |
|      | 8.4  | Experi    | ments                                        | 190 |
|      |      | 8.4.1     | Synthetic Experiment                         | 190 |
|      |      | 8.4.2     | Real-world Datasets                          | 191 |
|      |      | 8.4.3     | Discussion                                   | 193 |

x Contents

|    |             | 8.4.4   | Property Analysis                              | 196        |  |
|----|-------------|---------|------------------------------------------------|------------|--|
|    |             | 8.4.5   | Incomplete Single Source Comparison            | 199        |  |
|    | 8.5         | Summa   | ury                                            | 200        |  |
|    | Refer       |         |                                                | 201        |  |
| 9  | Deen        | Domain  | Adaptation                                     | 203        |  |
|    | 9.1         |         | ound                                           | 203        |  |
|    | 9.2         | _       | 1 Low-Rank Coding                              | 204        |  |
|    | >. <u>_</u> | 9.2.1   | Single-Layer Low-Rank Coding                   | 205        |  |
|    |             | 9.2.2   | Optimization Solution                          | 208        |  |
|    |             | 9.2.3   | Complexity Analysis                            | 210        |  |
|    |             | 9.2.4   | Experimental Results                           | 211        |  |
|    | 9.3         | Deep L  | ow-Rank Coding                                 | 215        |  |
|    |             | 9.3.1   | Preliminaries                                  | 217        |  |
|    |             | 9.3.2   | Motivation                                     | 217        |  |
|    |             | 9.3.3   | Deep Transfer Low-Rank Coding                  | 218        |  |
|    |             | 9.3.4   | Non-linear Representation                      | 224        |  |
|    |             | 9.3.5   | Experimental Results                           | 227        |  |
|    | 9.4         | Spectra | l Bisection Tree Guided Deep Adaptive Exemplar |            |  |
|    |             | Autoen  | coder                                          | 234        |  |
|    |             | 9.4.1   | Overview                                       | 234        |  |
|    |             | 9.4.2   | Data Composition via Spectral Bisection Tree   | 236        |  |
|    |             | 9.4.3   | Deep Adaptive Exemplar Autoencoder             | 237        |  |
|    |             | 9.4.4   | Experimental Results                           | 243        |  |
|    |             | 9.4.5   | Datasets and Experimental Setting              | 244        |  |
|    |             | 9.4.6   | Results and Discussion                         | 244<br>246 |  |
|    | 9.5         | 3       |                                                |            |  |
|    | Refer       | ences   |                                                | 246        |  |
| 10 | Deep        | Domain  | Generalization                                 | 251        |  |
|    | 10.1        | Backgr  | ound                                           | 251        |  |
|    | 10.2        | Related | Work                                           | 253        |  |
|    | 10.3        | Deep C  | Generalized Transfer Learning                  | 254        |  |
|    |             | 10.3.1  | Motivation                                     | 254        |  |
|    |             | 10.3.2  | Deep Neural Networks Revisit                   | 255        |  |
|    |             | 10.3.3  | Deep Generalized Transfer Learning             | 255        |  |
|    |             | 10.3.4  | Model Training                                 | 258        |  |
|    | 10.4        | -       | ments                                          | 260        |  |
|    |             | 10.4.1  | Datasets and Experimental Setting              | 260        |  |
|    |             | 10.4.2  | Comparison Experiments                         | 261        |  |
|    |             | 10.4.3  | Self-evaluation                                | 264        |  |
|    | 10.5        | Summa   | nry                                            | 266        |  |
|    | Refer       | ences   |                                                | 267        |  |