Skip to main content

Breast Ultrasound Image Classification and Segmentation Using Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11166))

Abstract

Due to the shortage and uneven distribution of medical resources all over the world, breast cancer diagnosis and treatment is a fundamental but vital problem, especially in developing countries. Breast ultrasound image classification and segmentation method by using Convolutional Neural Networks (CNN) can be a new efficient solution in early analysis and diagnosis. What’s more, the diagnosing of diversity of cancers is challenge in itself and the training of data-driven based CNN model also highly relay on dataset. In this paper, we first build a breast ultrasound dataset (with 1418 normal and 1182 cancerous samples) labeled by three radiologists from XiangYa Hospital of Hunan Province. And then, we propose a two-stage Computer-Aided Diagnosis (CAD) system to diagnose the breast cancer automatically. Firstly, the system utilize a pre-trained ResNet generated with transfer learning approach to excluded normal candidates, and then use an improved Mask R-CNN model for the accurate tumor segmentation. Experimental results show that the proposed system can achieve 98.72% precision and 98.05% recall for classification, and 85% (1.2% improvement) mAP and 82.7% (3.1% improvement) F1-Measure than the original Mask R-CNN model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akin, O., et al.: Advances in oncologic imaging: update on 5 common cancers. CA: Cancer J. Clin. 62(6), 364 (2012)

    Google Scholar 

  2. Arbelaez, P., Maire, M., Fowlkes, C.C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  3. Huynh, B., Drukker, K., Giger, M.: MO-DE-207B-06: computer-aided diagnosis of breast ultrasound images using transfer learning from deep convolutional neural networks. Med. Phys. 43, 3705 (2016)

    Article  Google Scholar 

  4. Byra, M., Nowicki, A., Wroblewskapiotrzkowska, H., Dobruchsobczak, K.: Classification of breast lesions using segmented quantitative ultrasound maps of homodyned K distribution parameters. Med. Phys. 43(10), 5561–5569 (2016)

    Article  Google Scholar 

  5. Cai, L., Wang, X., Wang, Y., Guo, Y., Yu, J., Wang, Y.: Robust phase-based texture descriptor for classification of breast ultrasound images. Biomed. Eng. Online 14(1), 26 (2015)

    Article  Google Scholar 

  6. Cheng, H.D., Shan, J., Ju, W., Guo, Y., Zhang, L.: Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recognit. 43(1), 299–317 (2010)

    Article  Google Scholar 

  7. Dhungel, N., Carneiro, G., Bradley, A.P.: Deep learning and structured prediction for the segmentation of mass in mammograms. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 605–612. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_74

    Chapter  Google Scholar 

  8. Drukker, K., Gruszauskas, N.P., Sennett, C.A., Giger, M.L.: Breast us computer-aided diagnosis workstation: performance with a large clinical diagnostic population. Radiology 248(2), 392–397 (2008)

    Article  Google Scholar 

  9. Flores, W.G., Pereira, W.C.A., Infantosi, A.F.C.: Breast ultrasound despeckling using anisotropic diffusion guided by texture descriptors. Ultrasound Med. Biol. 40(11), 2609–2621 (2014)

    Article  Google Scholar 

  10. Flores, W.G., Pereira, W.C.A., Infantosi, A.F.C.: Improving classification performance of breast lesions on ultrasonography. Pattern Recognit. 48(4), 1125–1136 (2015)

    Article  Google Scholar 

  11. Gomez, W., Pereira, W.C.A., Infantosi, A.F.C.: Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound. IEEE Trans. Med. Imaging 31(10), 1889–1899 (2012)

    Article  Google Scholar 

  12. Gomez, W., Pereira, W.C.A., Infantosi, A.F.C.: Evolutionary pulse-coupled neural network for segmenting breast lesions on ultrasonography. Neurocomputing 175, 877–887 (2016)

    Article  Google Scholar 

  13. He, K., Gkioxari, G., Dollr, P., Girshick, R.: Mask R-CNN. In: IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Horsch, K., Giger, M.L., Venta, L.A., Vyborny, C.J.: Computerized diagnosis of breast lesions on ultrasound. Med. Phys. 29(2), 157–164 (2002)

    Article  Google Scholar 

  16. Joo, S., Yang, Y.S., Moon, W.K., Kim, H.C.: Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. IEEE Trans. Med. Imaging 23(10), 1292–1300 (2004)

    Article  Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks, pp. 1097–1105 (2012)

    Google Scholar 

  18. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  19. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollr, P.: Focal loss for dense object detection, pp. 2999–3007 (2017)

    Google Scholar 

  20. Madabhushi, A., Metaxas, D.N.: Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE Trans. Med. Imaging 22(2), 155–169 (2003)

    Article  Google Scholar 

  21. Marcomini, K.D., Carneiro, A.A.O., Schiabel, H.: Application of artificial neural network models in segmentation and classification of nodules in breast ultrasound digital images. Int. J. Biomed. Imaging 2016, 7987212 (2016)

    Article  Google Scholar 

  22. Moon, W.K., Lo, C.M., Chang, J.M., Huang, C.S., Chen, J.H., Chang, R.F.: Computer-aided classification of breast masses using speckle features of automated breast ultrasound images. Med. Phys. 39(10), 6465–6473 (2012)

    Article  Google Scholar 

  23. Pons, G., Marti, J., Marti, R., Ganau, S., Vilanova, J.C., Noble, J.A.: Evaluating lesion segmentation on breast sonography as related to lesion type. J. Ultrasound Med. 32(9), 1659–1670 (2013)

    Article  Google Scholar 

  24. Rodrigues, R., Braz, R., Pereira, M., Moutinho, J., Pinheiro, A.M.: A two-step segmentation method for breast ultrasound masses based on multi-resolution analysis. Ultrasound Med. Biol. 41(6), 1737–1748 (2015)

    Article  Google Scholar 

  25. Rodrigues, R., Pinheiro, A.M.G., Braz, R., Pereira, M., Moutinho, J.: Towards breast ultrasound image segmentation using multi-resolution pixel descriptors, pp. 2833–2836 (2012)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Sadek, I., Elawady, M., Stefanovski, V.: Automated breast lesion segmentation in ultrasound images. Computer Vision and Pattern Recognition. arXiv:1609.08364 (2016)

  28. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  29. Shi, J., Zhou, S., Liu, X., Zhang, Q., Lu, M., Wang, T.: Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 194, 87–94 (2016)

    Article  Google Scholar 

  30. Su, H., Liu, F., Xie, Y., Xing, F., Meyyappan, S., Yang, L.: Region segmentation in histopathological breast cancer images using deep convolutional neural network, pp. 55–58 (2015)

    Google Scholar 

  31. Takemura, A., Shimizu, A., Hamamoto, K.: Discrimination of breast tumors in ultrasonic images using an ensemble classifier based on the adaboost algorithm with feature selection. IEEE Trans. Med. Imaging 29(3), 598–609 (2010)

    Article  Google Scholar 

  32. Uniyal, N., et al.: Ultrasound RF time series for classification of breast lesions. IEEE Trans. Med. Imaging 34(2), 652–661 (2015)

    Article  MathSciNet  Google Scholar 

  33. Wang, D., Shi, L., Heng, P.A.: Automatic detection of breast cancers in mammograms using structured support vector machines. Neurocomputing 72, 3296–3302 (2009)

    Article  Google Scholar 

  34. Wang, W., Zhu, L., Qin, J., Chui, Y.P., Li, B.N., Heng, P.A.: Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion. Opt. Lasers Eng. 54, 105–116 (2014)

    Article  Google Scholar 

  35. Wang, Z., Yu, G., Kang, Y., Zhao, Y., Qu, Q.: Breast tumor detection in digital mammography based on extreme learning machine. Neurocomputing 128(5), 175–184 (2014)

    Article  Google Scholar 

  36. Xi, X., et al.: Breast tumor segmentation with prior knowledge learning. Neurocomputing 237, 145–157 (2017)

    Article  Google Scholar 

  37. Xian, M., Huang, J., Zhang, Y., Tang, X.: Multiple-domain knowledge based MRF model for tumor segmentation in breast ultrasound images, pp. 2021–2024 (2012)

    Google Scholar 

  38. Shi, X., Cheng, H.D., Hu, L.: Mass detection and classification in breast ultrasound images using fuzzy SVM. In: Proceedings of Joint Conference on Information Sciences (2006)

    Google Scholar 

  39. Yap, M.H., Edirisinghe, E., Bez, H.: Processed images in human perception: a case study in ultrasound breast imaging. Eur. J. Radiol. 73(3), 682–687 (2010)

    Article  Google Scholar 

  40. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

Download references

Acknowledgement

This work has been supported by National Key R&D Program of China (2017YFB1301100), National Natural Science Foundation of China (61572060, 61772060, 61728201) and CERNET Innovation Project (NGII20160316, NGII20170315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, X., Shi, F., Niu, J., Tang, X. (2018). Breast Ultrasound Image Classification and Segmentation Using Convolutional Neural Networks. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00764-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00763-8

  • Online ISBN: 978-3-030-00764-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics