Skip to main content

Dataset Refinement for Convolutional Neural Networks via Active Learning

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11166))

Included in the following conference series:

  • 3086 Accesses

Abstract

Convolutional neural networks (CNNs) have shown significant advantages in computer vision fields. For the optimizations of CNNs, most research works focus on feature extraction, which creates deeper structures and better activations, but the optimizations on dataset is rarely discussed. Due to the boom of data, most CNNs suffer from serious problems of dataset redundancy and following high computational burden. To this end, this paper brings in an informativeness ranking thought and proposes a new methodology for dataset refinement based on Active Learning. Extensive experiments prove its effectiveness to achieve a higher classification accuracy for CNNs at a less training cost. Moreover, for classification problems with a large number of class, this paper further proposes Entropy Ranking, a new Active Learning method, to enhance the optimization ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in neural information processing systems, pp. 1988–1996 (2014)

    Google Scholar 

  2. Huang, F.J., LeCun, Y.: Large-scale learning with SVM and convolutional for generic object categorization. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 284–291. IEEE (2006)

    Google Scholar 

  3. Zhou, H., Huang, G.B., Lin, Z., Wang, H., Soh, Y.C.: Stacked extreme learning machines. IEEE Trans. Cybern. 45(9), 2013–2025 (2015)

    Article  Google Scholar 

  4. Zhang, L., Chen, C., Bu, J., Cai, D., He, X., Huang, T.S.: Active learning based on locally linear reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 2026–2038 (2011)

    Article  Google Scholar 

  5. Garcia-Pedrajas, N., Perez-Rodriguez, J., de Haro-Garcia, A.: OligoIS: scalable instance selection for class-imbalanced data sets. IEEE Trans. Cybern. 43(1), 332–346 (2013)

    Article  Google Scholar 

  6. Liu, P., Zhang, H., Eom, K.B.: Active deep learning for classification of hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 10(2), 712–724 (2017)

    Article  Google Scholar 

  7. Du, B., et al.: Exploring representativeness and informativeness for active learning. IEEE Trans. Cybern. 47(1), 14–26 (2017)

    Article  Google Scholar 

  8. Tuia, D., Pasolli, E., Emery, W.J.: Using active learning to adapt remote sensing image classifiers. Remote Sens. Environ. 115(9), 2232–2242 (2011)

    Article  Google Scholar 

  9. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  10. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010)

    Article  Google Scholar 

  11. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition, CVPR, pp 1–9 (2015)

    Google Scholar 

  14. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, ICML 2010, pp. 807–814 (2010)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  16. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: International Conference on Machine Learning, ICML, pp. 507–516 (2016)

    Google Scholar 

  17. Pasolli, E., Melgani, F., Tuia, D., Pacifici, F., Emery, W.J.: Improving active learning methods using spatial information. In: 2011 IEEE International on Geoscience and Remote Sensing Symposium, IGARSS, pp. 3923–3926. IEEE (2011)

    Google Scholar 

  18. Li, M., Sethi, I.K.: Confidence-based active learning. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1251–1261 (2006)

    Article  Google Scholar 

  19. Tuia, D., Ratle, F., Pacifici, F., Kanevski, M.F., Emery, W.J.: Active learning methods for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 47(7), 2218–2232 (2009)

    Article  Google Scholar 

  20. Crawford, M.M., Tuia, D., Yang, H.L.: Active learning: any value for classification of remotely sensed data? Proc. IEEE 101(3), 593–608 (2013)

    Article  Google Scholar 

  21. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

Download references

Acknowledgments

The research was supported by National Natural Science Foundation of China (61671332, U1736206, 41771452, 41771454), Hubei Province Technological Innovation Major Project (2017AAA123) and the National Key Research and Development Program of China (2016YFE0202300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Zhu, R., Luo, Y., Wang, Z., Zhou, L. (2018). Dataset Refinement for Convolutional Neural Networks via Active Learning. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00764-5_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00763-8

  • Online ISBN: 978-3-030-00764-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics