Skip to main content

Coupled Learning for Image Generation and Latent Representation Inference Using MMD

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11165))

Included in the following conference series:

  • 2432 Accesses

Abstract

For modeling the data distribution or the latent representation distribution in the image domain, deep learning methods such as the variational autoencoder (VAE) and the generative adversarial network (GAN) have been proposed. However, despite its capability of modeling these two distributions, VAE tends to learn less meaningful latent representations; GAN can only model the data distribution using the challenging and unstable adversarial training. To address these issues, we propose an unsupervised learning framework to perform coupled learning of these two distributions based on kernel maximum mean discrepancy (MMD). Specifically, the proposed framework consists of (1) an inference network and a generation network for mapping between the data space and the latent space, and (2) a latent tester and a data tester for performing two-sample tests in these two spaces, respectively. On one hand, we perform a two-sample test between stochastic representations from the prior distribution and inferred representations from the inference network. On the other hand, we perform a two-sample test between the real data and generated data. In addition, we impose structural regularization that the two networks are inverses of each other, so that the learning of these two distributions can be coupled. Experimental results on benchmark image datasets demonstrate that the proposed framework is competitive on image generation and latent representation inference of images compared with representative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. CoRR arXiv:1701.07875 (2017)

  2. Bojanowski, P., Joulin, A., Lopez-Paz, D., Szlam, A.: Optimizing the latent space of generative networks. CoRR arXiv:1707.05776

  3. Chen, X., et al.: Variational lossy autoencoder. CoRR arXiv:1611.02731 (2016)

  4. Denton, E.L., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a laplacian pyramid of adversarial networks. In: NIPS, pp. 1486–1494 (2015)

    Google Scholar 

  5. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: NIPS, pp. 658–666 (2016)

    Google Scholar 

  6. Dumoulin, V., et al.: Adversarially learned inference. CoRR arXiv:1606.00704 (2016)

  7. Dziugaite, G.K., Roy, D.M., Ghahramani, Z.: Training generative neural networks via maximum mean discrepancy optimization. In: UAI, pp. 258–267 (2015)

    Google Scholar 

  8. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  9. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A kernel method for the two-sample-problem. In: NIPS, pp. 513–520 (2006)

    Google Scholar 

  10. Grewal, K., Hjelm, R.D., Bengio, Y.: Variance regularizing adversarial learning. CoRR arXiv:1707.00309

  11. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 5967–5976 (2017)

    Google Scholar 

  12. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML, pp. 1857–1865 (2017)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR arXiv:1412.6980

  14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. CoRR arXiv:1312.6114

  15. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  16. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: ICML, pp. 1558–1566 (2016)

    Google Scholar 

  17. Li, C., Chang, W., Cheng, Y., Yang, Y., Póczos, B.: MMD GAN: towards deeper understanding of moment matching network. CoRR arXiv:1705.08584

  18. Li, Y., Swersky, K., Zemel, R.S.: Generative moment matching networks. In: ICML, pp. 1718–1727 (2015)

    Google Scholar 

  19. Liu, M., Tuzel, O.: Coupled generative adversarial networks. In: NIPS, pp. 469–477 (2016)

    Google Scholar 

  20. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV, pp. 3730–3738 (2015)

    Google Scholar 

  21. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z.: Multi-class generative adversarial networks with the L2 loss function. CoRR arXiv:1611.04076 (2016)

  22. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. CoRR arXiv:1511.05440 (2015)

  23. Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR arXiv:1411.1784

  24. Nowozin, S., Cseke, B., Tomioka, R.: f-GAN: training generative neural samplers using variational divergence minimization. In: NIPS, pp. 271–279 (2016)

    Google Scholar 

  25. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR arXiv:1511.06434

  26. Sutherland, D.J., et al.: Generative models and model criticism via optimized maximum mean discrepancy. CoRR arXiv:1611.04488

  27. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.: Extracting and composing robust features with denoising autoencoders. In: ICML, pp. 1096–1103 (2008)

    Google Scholar 

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: NIPS, pp. 82–90 (2016)

    Google Scholar 

  30. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. CoRR abs/1612.03242 (2016)

    Google Scholar 

  31. Zhao, J.J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. CoRR arXiv:1609.03126

  32. Zhao, S., Song, J., Ermon, S.: InfoVAE: information maximizing variational autoencoders. CoRR arXiv:1706.02262

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hau-san Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, S., Cao, Wm., Li, R., Wu, S., Wong, Hs. (2018). Coupled Learning for Image Generation and Latent Representation Inference Using MMD. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11165. Springer, Cham. https://doi.org/10.1007/978-3-030-00767-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00767-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00766-9

  • Online ISBN: 978-3-030-00767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics