Skip to main content

Robust Deep Gaussian Descriptor for Texture Recognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11164))

Abstract

Recently, second-order statistical modeling methods with convolutional features have shown impressive potential as image representation for vision tasks. Among them, bilinear convolutional neural network (B-CNN) has attracted a lot of attentions due to its simplicity and effectiveness. It captures the second-order local feature statistics via outer product, which approximately explores the covariance between convolutional features and achieves promising performance for texture recognition. In order to inherit the merits of B-CNN while further improving its performance, we introduce a Gaussian descriptor into B-CNN and propose a novel robust deep Gaussian descriptor (RDGD) method for texture recognition. We first compute Gaussian by using the output of outer product of B-CNN, and then embed it into the space of symmetric positive definite (SPD) matrices. Finally, matrix power normalization operation is employed to obtain more robust Gaussian descriptor. Experimental results on three texture databases demonstrate that RDGD is superior to its baseline B-CNN and the state-of-the-arts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sharan, L., Liu, C., Rosenholtz, R., et al.: Recognizing materials using perceptually inspired features. Int. J. Comput. Vision. 103(3), 348–371 (2013)

    Article  MathSciNet  Google Scholar 

  2. Oyallon, E., Mallat, S.: Deep roto-translation scattering for object classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2865–2873 (2015)

    Google Scholar 

  3. Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  4. Varma, M., Garg, R.: Locally invariant Fractal features for statistical texture classification. In: International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  5. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision. 115(3), 211–252 (2014)

    Article  MathSciNet  Google Scholar 

  6. Ionescu, C., Vantzos, O., Sminchisescu, C.: Matrix backpropagation for deep networks with structured layers. In: International Conference on Computer Vision, pp. 2965–2973 (2015)

    Google Scholar 

  7. Lin, T.Y., Roychowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: International Conference on Computer Vision, pp. 1449–1457 (2016)

    Google Scholar 

  8. Wang, Q., Li, P., Zuo, W., et al.: RAID-G: robust estimation of approximate infinite dimensional Gaussian with application to material recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4433–4441 (2016)

    Google Scholar 

  9. Li, P.H., Xie, J.T., Wang, Q.L., et al.: Is second-order information helpful for large-scale visual recognition? In: International Conference on Computer Vision, pp. 2089–2097 (2017)

    Google Scholar 

  10. Sun, Q.L., Wang, Q.L., Zhang, J.X., et al.: Hyperlayer bilinear pooling with application to fine-grained categorization and image retrieval. Neurocomputing 282, 174–183 (2018)

    Article  Google Scholar 

  11. Lin, T.Y., Maji, S.: Visualizing and understanding deep texture representations. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2791–2799 (2016)

    Google Scholar 

  12. Wang, Q.L., Li, P.H., Zhang, L., et al.: Towards effective codebookless model for image classification. Pattern Recog. 59(C), 63–71 (2016)

    Article  Google Scholar 

  13. Lovric, M., Min-Oo, M., Ruh, E.A.: Multivariate normal distributions parametrized as a Riemannian symmetric space. J. Multivariate Anal. 74(1), 36–48 (2000)

    Article  MathSciNet  Google Scholar 

  14. Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal. 88(2), 365–411 (2004)

    Article  MathSciNet  Google Scholar 

  15. Chen, Y., Wiesel, A., Eldar, Y.C., et al.: Shrinkage algorithms for MMSE covariance estimation. IEEE Trans. Signal Process. 58(10), 5016–5029 (2010)

    Article  MathSciNet  Google Scholar 

  16. Haran, L., Rosenholtz, R., Adelson, E.H.: Material perception: what can you see in a brief glance? J. Vision 9(8), 784–784 (2009)

    Google Scholar 

  17. Cimpoi, M., Maji, S., Kokkinos, I., et al.: Describing textures in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3603–3613 (2014)

    Google Scholar 

  18. Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: International Conference on Computer Vision, pp. 1597–1604 (2015)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations, pp. 1–9 (2015)

    Google Scholar 

  20. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Interact. Intell. 2(3), 1–27 (2011)

    Google Scholar 

  21. Cimpoi, M., Maji, S., Vedaldi, A.: Deep filter banks for texture recognition and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3828–3836 (2015)

    Google Scholar 

  22. Gao, Y., Beijbom, O., Zhang, N., et al.: Compact bilinear pooling. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 317–326 (2016)

    Google Scholar 

  23. Kong, S., Fowlkes, C.: Low-rank bilinear pooling for fine-grained classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7025–7034 (2017)

    Google Scholar 

  24. Song, Y., Zhang, F., Li, Q., et al.: Locally-transferred Fisher vectors for texture classification. In: International Conference on Computer Vision, pp. 4922–4930 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61202251 and 91546123), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R07), the Liaoning Provincial Natural Science Foundation (No. 201602035) and the High-level Talent Innovation Support Program of Dalian City (No. 2016RQ078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxin Zhang or Bin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Zhang, J., Sun, Q., Liu, B., Zhang, Q. (2018). Robust Deep Gaussian Descriptor for Texture Recognition. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11164. Springer, Cham. https://doi.org/10.1007/978-3-030-00776-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00776-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00775-1

  • Online ISBN: 978-3-030-00776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics