Skip to main content

DT-3DResNet-LSTM: An Architecture for Temporal Activity Recognition in Videos

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11164))

Abstract

Human activity recognition is a very important problem in computer vision that is still largely unsolved. While recent advances such as deep learning have given us great results on image related tasks, it is still difficult to recognize behavior in videos due to a great deal of disturbance in videos. We propose an architecture DT-3DResNet-LSTM to classify and temporally localize activities in videos. We detect objects in video frames and use these detected results as input to object tracking model, achieving data association information among adjacent frames of multiple objects. Then the clipped video frames of different objects are put into 3D Convolutional Neural Network (CNN) to achieve features, and a Recurrent Neural Network (RNN), specifically Long Short-Term Memory (LSTM), is trained to classify video clips. What’s more, we process the output of RNN (LSTM) model to get the final classification of input video and determine the temporal localization of input video.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. TRECVID Homepage. https://www-nlpir.nist.gov/projects/tv2018/

  2. Wang H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558. IEEE (2013)

    Google Scholar 

  3. Ng, J.Y.H., Hausknecht, M., Vijayanarasimhan, S., et al.: Beyond short snippets: deep networks for video classification. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 4694–4702. IEEE (2015)

    Google Scholar 

  4. Feichtenhofer, C., Pinz A, Zisserman A P.: Convolutional two-stream network fusion for video action recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition 2016, CVPR, pp. 1933–1941. IEEE (2016)

    Google Scholar 

  5. Wang, L., Xiong, Y., Wang, Z., et al.: Towards good practices for very deep two-stream convnets. arXiv preprint arXiv:1507.02159 (2015)

  6. Yao, L., Torabi, A., Cho, K., et al.: Describing videos by exploiting temporal structure. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4507–4515. IEEE (2015)

    Google Scholar 

  7. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018, pp. 18–22. IEEE, Salt Lake City (2018)

    Google Scholar 

  8. Kay, W., Carreira, J., Simonyan, K., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  9. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 770–778. IEEE (2016)

    Google Scholar 

  10. Dai, J., Li, Y., He, K., et al.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

    Google Scholar 

  11. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision 2015, pp. 1440–1448 (2015)

    Google Scholar 

  12. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  13. Uijlings, J.R.R., Van De Sande, K.E.A., Gevers, T., et al.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  14. Niebles, J.C., Han, B., Fei-Fei, L.: Efficient extraction of human motion volumes by tracking. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 655–662. IEEE (2010)

    Google Scholar 

  15. Oh, S., Russell, S., Sastry, S.: Markov chain Monte Carlo data association for multi-target tracking. IEEE Trans. Autom. Control 54(3), 481–491 (2009)

    Article  MathSciNet  Google Scholar 

  16. Kim, Suna, Kwak, Suha, Feyereisl, Jan, Han, Bohyung: Online multi-target tracking by large margin structured learning. In: Lee, Kyoung Mu, Matsushita, Yasuyuki, Rehg, James M., Hu, Zhanyi (eds.) ACCV 2012. LNCS, vol. 7726, pp. 98–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37431-9_8

    Chapter  Google Scholar 

  17. Breitenstein, M.D., Reichlin, F., Leibe, B., et al.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1820–1833 (2011)

    Article  Google Scholar 

  18. Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spatiotemporal multiplier networks for video action recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition 2017, CVPR, pp. 7445–7454. IEEE (2017)

    Google Scholar 

  19. Ji, S., Xu, W., Yang, M., et al.: 3D convolutional neural networks for human action recognition. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 221–231. IEEE (2013)

    Article  Google Scholar 

  20. Tran, D., Bourdev, L., Fergus, R., et al.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497. IEEE (2015)

    Google Scholar 

  21. Karpathy, A., Toderici, G., Shetty S, et al.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1725–1732. IEEE (2014)

    Google Scholar 

  22. Varol, G., Laptev, I., Schmid, C.: Long-term temporal convolutions for action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1510–1517 (2017)

    Article  Google Scholar 

  23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  24. Yoon, J.H., Yang, M.H., Lim, J., et al.: Bayesian multi-object tracking using motion context from multiple objects. In: 2015 IEEE Winter Conference on Applications of Computer Vision, WACV, pp. 33–40. IEEE (2015)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Hara, K., Kataoka, H., Satoh, Y.: Learning spatio-temporal features with 3D residual networks for action recognition. In: Proceedings of the ICCV Workshop on Action, Gesture, and Emotion Recognition. vol. 2, No. 3, p. 4 (2017)

    Google Scholar 

  27. Xie, S., Girshick, R., Dollár, P., et al.: Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 5987–5995. IEEE (2017)

    Google Scholar 

  28. Yeung, S., Russakovsky, O., Jin, N., et al.: Every moment counts: dense detailed labeling of actions in complex videos. Int. J. Comput. Vis. 126(2–4), 375–389 (2018)

    Article  MathSciNet  Google Scholar 

  29. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: Activitynet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015, pp. 961–970. IEEE (2015)

    Google Scholar 

  30. Oh, S., Hoogs, A., Perera, A., et al.: A large-scale benchmark dataset for event recognition in surveillance video. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 3153–3160. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, L., Qian, Y. (2018). DT-3DResNet-LSTM: An Architecture for Temporal Activity Recognition in Videos. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11164. Springer, Cham. https://doi.org/10.1007/978-3-030-00776-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00776-8_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00775-1

  • Online ISBN: 978-3-030-00776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics