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Abstract. Parkinson’s disease is a neurodegenerative disorder charac-
terized by a variety of motor symptoms, including several impairments
in the speech production process. Recent studies show that deep learning
models are highly accurate to assess the speech deficits of the patients;
however most of the architectures consider static features computed from
a complete utterance. Such an approach is not suitable to model the dy-
namics of the speech signal when the patients pronounce different sounds.
Phonological features can be used to characterize the voice quality of
the speech, which is highly impaired in patients suffering from Parkin-
son’s disease. This study proposes a deep architecture based on recurrent
neural networks with gated recurrent units combined with phonological
posteriors to assess the speech deficits of Parkinson’s patients. The aim
is to model the time-dependence of consecutive phonological posteriors,
which follow the sound patterns of English phonological model. The re-
sults show that the proposed approach is more accurate than a baseline
based on standard acoustic features to assess the speech deficits of the
patients.
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1 Introduction

Parkinson’s disease (PD) is a neurological disorder characterized by the pro-
gressive loss of dopaminergic neurons in the mid-brain, producing several motor
and non-motor impairments [1]. The motor symptoms include different speech
deficits including reduced loudness, monopitch, monoloudness, reduced stress,
breathy, hoarse voice quality, and imprecise articulation. These impairments are
grouped together and called hypokinetic dysarthria [2]. The disease progression
in motor activities is currently evaluated with the third section of the movement
disorder society, unified Parkinson’s disease rating scale (MDS-UPDRS-III) [3].
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Several studies in the literature have described the speech impairments de-
veloped by PD patients in terms of four different dimensions: phonation, ar-
ticulation, prosody, and intelligibility [4,5]. These feature extraction strategies
have shown to be suitable to support the diagnosis process and to assess the
neurological state of the patients. Although the success of these classical feature
extraction approaches, in the recent years deep learning methods have shown to
be highly accurate to assess the speech of PD patients [6,7]. In [6] the authors
proposed a deep learning model to assess the severity of dysarthria in speech. The
model considers an intermediate interpretable hidden layer to assess four per-
ceptual dimensions: nasality, vocal quality, articulatory precision, and prosody.
The authors reported a Spearman’s correlation of up to 0.82 between the output
of the deep learning model and a perceptual score of the severity of dysarthria
provided by speech and language therapists. In [7] the authors considered a
convolutional neural network and time-frequency representations to model ar-
ticulation impairments in the speech of PD patients [7]. The model classified
PD patients vs. healthy control subjects with accuracies of up to 89%. To the
best of our knowledge, most of the related studies that consider deep learning
methods to assess pathological speech only consider static features computed
from a complete utterance. Those methods are not able to model the dynam-
ics of the speech signal properly when the patients pronounce different sounds
in continuous speech such as sentences or monologues. From the different deep
learning architectures, the recurrent neural networks (RNN) have been designed
to process the time-dependence of sequential inputs such as text or speech, which
makes it suitable to model the dynamics of speech features computed for differ-
ent frames. On the other hand, voice quality of the speech can be characterized
using phonological features [8], by computing phonological posterior features for
modal and non-modal phonations on consecutive speech frames.

This study combines the phonological analysis and RNNs to model the dy-
namics of the features computed on consecutive frames to assess the speech
deficits of PD patients. RNNs are formed with gate recurrent units (GRUs) [9],
which have shown similar results than the standard long short-term memory
(LSTM) units, but with less parameters to learn. The results indicate that the
dynamics phonological posterior features are better to model the speech impair-
ments of PD patients than the standard acoustic features based on Mel frequency
Cepstral coefficients (MFCCs). In addition, the phonological posteriors provide
interpretable results for the medical examiner to evaluate the speech state of the
patients.

2 Methods

2.1 Phonological Features extraction

Phonological features were extracted using the deep learning approach from [10].
This process involves the following steps: (1) the speech signal is segmented in
short-time frames, (2) 13 MFCCs and their derivatives are computed for every
frame of the speech signal, and (3) a set of 15 pre-trained DNNs infers the
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Fig. 1. Phonological feature extraction process

phonological posteriors from the acoustic feature vector. These posteriors are
concatenated in a phonological feature vector z;. The process is summarized in
Figure 1, where X is the set of acoustic features and Z is the set of phonological
features. A total of 14 phonological features are computed. Table 1 shows details
of each phonological feature.

Table 1. List of phonological features

Feature Brief description
Vocalic Refers to the vocal folds vibration without constriction in the vocal tract.
Consonantal Indicates sounds where there is an obstruction of the vocal tract.
High The body of the tongue is above its neutral position.
Back The body of the tongue is retracted from its neutral position.
Low The body of the tongue is below its neutral position.
Anterior Indicates an obstruction located in front of the palato-alveolar region of the mouth.
Coronal The blade of the tongue is raised from its neutral position.
Round Refers to narrowed lips.
Rising Differentiates diphthongs from monophthongs.
Tense Indicates stressed vowels.
Voice Indicates voiced sounds.
Continuant Differentiates plosives from non-plosives.
Nasal Indicates a lowered velum, where the air to escape through the nose.
Strident Refers to sounds with more energy in high frequency components.
Silence Tells that there is no speech in the frame.

2.2 Recurrent neural network and GRU units

The RNNs process the sequence one element at a time, a state vector in their
hidden units, which contains information about the history of all the past ele-
ments of the sequence [11]. The RNNs can be formed with different recurrent
units including the conventional recurrent units, the long short-term memory
(LSTM) units, or the gated recurrent units (GRUs). The conventional recurrent
units can be seen as very deep networks where all the layers share the same
weights. Although their main purpose is to learn long-term dependencies, there
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is evidence that shows difficulties to learn very long sequences [12]. This prob-
lem may be fixed with the LSTM units, which have a memory cell to model the
long-term time-dependency. The GRU were proposed as a modification of the
LSTM replacing the separate input and forget gates with a reset gait to control
the input information to the network. GRUs and LSTMs have provided similar
results for several tasks including speech and language modeling [13]; however,
the GRUs are faster to train and require less parameters [14], which make these
units more suitable to be used when less train data is available.

Figure 2 shows the architecture used in this study to process the phono-
logical posteriors sequences and the MFCC feature vectors. The phonological
features are processed individually by two GRU layers. On the other path, clas-
sical MFCC features are modeled by other two GRU units. The ouput of the
two paths are merged with two fully connected layers (hl, and h2), followed by
the output layer to make the final decision. Three architectures are considered
in this study: (1) a network to process only the phonological posteriors, (2) a
network to process only the acoustic features, and (3) a network to combine the
phonological and acoustic features (see Figure 2).

sequence of frames

phonological
posteriors

GRU1 GRU2
sequence of frames y

hl h2

MEFCC

GRU1 GRU2

Fig. 2. Deep architecture to assess speech impairments of PD patients using phono-
logical posteriors and GRU units

2.3 Validation

The experiments are validated using 80% of the data for training, 10% to opti-
mize the hyper-parameters, i.e., development set, and the remaining 10% to test.
The process is repeated 10 times with different partitions to produce different and
independent test sets. The hyper-parameter tuning is performed with a Bayesian
optimization approach [15] due to the large number of hyper-parameters to op-
timize. The tuning is performed based on an optimization problem, where the
hyper-parameters that maximize the performance of the model on the develop-
ment set are found. The range of the hyper-parameters to be optimized is shown
in Table 2. A batch-size of 128 samples and a total of 100 epochs are considered
with an early stopping strategy.
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Table 2. Range of the hyper-parameters used to train the RNN.

Hyper-parameter Values
GRU units in all layers {8,16, 32,64}
Hidden units in fully connected layers {16, 32,64, 128}
Learning rate {0.0001,---,0.01}
Dropout rate {0.1,0.2---0.7}
Recurrent dropout rate {0.1,0.2---0.7}

3 Data

3.1 m-FDA scale

The evaluation of PD patients according to the MDS-UPDRS-III scale has shown
to be suitable to assess general motor impairments of PD patients; however,
the deterioration of the communication skills of the PD patients is not prop-
erly evaluated because such a scale only considers speech impairments in one
of its items. A modified version of the Frenchay dysarthria assessment scale
(m-FDA), which can be administered based on speech recordings was recently
developed [4,8]. The scale includes several aspects of speech: respiration, lips
movement, palate/velum movement, larynx, tongue, monotonicity, and intel-
ligibility. The scale has a total of 13 items and each of them ranges from 0
(normal or completely healthy) to 4 (very impaired), thus the total score of the
scale ranges from 0 to 52. The labeling process of the recordings was performed
by three phoniatricians who agreed in the first ten speakers. Afterwards, each
phoniatrician evaluated the remaining recordings independently. The inter-rater
reliability among the labelers is 0.75.

3.2 Participants

We consider the PC-GITA database [16]. The data contain speech utterances
from 50 PD and 50 HC Colombian Spanish native speakers balanced in age and
gender. The participants pronounce several utterances including the rapid repeti-
tion of the syllables /pa-ta-ka/, /pa-ka-ta/, /pe-ta-ka/, /pa/, /ta/, /ka/, isolated
sentences, a read text, and a monologue. All patients were recorded in ON state,
i.e., no more than three hours after their morning medication, and were evaluated
by a neurologist expert. Additional information from the participants is shown
in Table 3. In addition, Figure 3 shows the distribution of the clinical scores for
the patients. We divided the patients in three groups according to their level
of the total MDS-UPDRS-III and to the speech item of the MDS-UPDRS-III
scores. For the m-FDA score, the subjects are divided in four groups because
that scale was applied also to HC subjects (white bars). The division consider
the same number of subjects in each group.
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Table 3. Demographic information of the participants from this study

PD patients HC subjects
male female male female
Number of subjects 25 25 25 25
Age (ut o) 61.3+11.4 60.74£7.3 |60.5+£11.6 61.4+7.0
Range of age 33-81 49-75 31-86 49-76
Duration of the disease (u 4+ o)| 8.7£5.8 12.6+£11.6 - -
MDS-UDRS-III (p £ o) 37.8422.1 37.6+14.1 - -
MDS-UDRS-III speech (i +o)| 1.4£0.9 1.3£0.7 - -
Total m-FDA (p+ o) 29.848.6 28.249.0| 7.6£9.2 5.147.3
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Fig. 3. Distribution of the clinical scores for the participants of this study. Figure
includes the distribution of the total MDS-UPDRS-III score (A), the speech item of
the MDS-UPDRS-III score (B), and the m-FDA score (C). The scores for the PD
patients are grouped into three classes: low (green), intermediate (blue), and severe
(red) according to the severity of the disease. The scores for the m-FDA scale also
include HC subjects, represented with the white bars.

4 Experiments and results

Three experiments are performed: (1) classification of PD vs. HC subjects, (2)
classification of HC vs. PD patients in three stages of the disease divided ac-
cording to the speech item of the MDS-UPDRS-III score (see Figure 3 B), and
(3) classification of HC and PD patients divided into four groups according to
the total m-FDA scale (see Figure 3 C). The results are shown in Table 4.

The phonological features provide higher accuracies than those obtained with
MFCCs to discriminate between PD patients and HC subjects. On the other
hand, note that when we consider the multi-class experiments e.g., the classifi-
cation of the UPDRS-speech item and the m-FDA scores, the highest accuracies
are obtained with the fusion of MFCC and phonological features, which indi-
cate that these two feature sets provide complementary information to assess
the speech of PD patients in several stages of the disease. Further experiments
with other deep architectures are required to improve the results for multi-class
assessment of the patients.
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Table 4. Results of the proposed approach to classify PD patients vs. HC subjects,
and to assess the speech deficits of the patients following the speech item of the MDS-
UPDRS-IIT and the m-FDA scores. ACC: accuracy in the test set, AUC: Area under
receiving operating characteristic curve for the two-class experiments.

Features Classification Num. ACC. AUC
Task Classes

Phonological PD vs HC 2 76.0£5.8 0.78
Phonological UPDRS-speech 3 57.0£4.0 -
Phonological m-FDA 4 30.8+1.4 -
MFCC PD vs HC 2 65.0+4.7 0.66
MFCC UPDRS-speech 3 59.41+6.9 -
MFCC m-FDA 4 33.7+2.0 -
Phonological +MFCC PD vs HC 2 64.0£5.6 0.69
Phonological + MFCC UPDRS-speech 3 59.4£6.9 -
Phonological +MFCC m-FDA 4 39.5+11.3 -

5 Conclusion

This study considers phonological posterior features and recurrent neural net-
works based on GRU units to assess speech impairments of PD patients. A total
of 15 phonological features are computed based on the sound pattern of English
to model several aspects of the speech production system. The phonological pos-
teriors used in this study can be interpreted by medical experts, which may
support the evaluation of the speech state of the patients.

The results obtained with phonological features are compared with those
obtained with standard acoustic features based on MFCCs. The phonological
features are better to model the speech impairments of PD patients than the
standard acoustic features, specially to discriminate between PD patients and
HC subjects, however, the combination of acoustic features with the phonological
posteriors shows to be suitable to assess the speech deficits of the patients in
several stages of the disease. Further experiments are required with other deep
architectures to assess the neurological state and the dysarthria level of the
patients. Additionally, other feature sets based on phonation, articulation, or
prosody analyses could be considered.
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