Skip to main content

Review of Automated Weed Control Approaches: An Environmental Impact Perspective

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 940))

Abstract

Agricultural food production is in constant struggle to meet the market demands. Weed control is used to increase the per land unit production from agricultural field. The process of weed removal is usually performed manually and is a time-consuming and labor demanding task. Since mechanical removal is a difficult process, the plantations use herbicides to remove unwanted plants. Herbicides are applied in large quantities, thus often have a degenerative effect on the land. Sometimes, they even endanger the health of the workers who apply them and the end users which consume the harvested product. We review the technologies used for automated weed control and its environmental impact, specifically on the pollution reduction. We also review the herbicides reduction reported in implemented and tested approaches for precision agriculture with emphasis on the weed control environmental impact. Based on the reviewed papers, we conclude that automated weed detection can identify unwanted plants with decent accuracy. Consequently, this can facilitate building autonomous spraying systems that can significantly reduce the quantity of applied herbicides by precisely applying the chemicals only on the plants or mechanically removing unwanted plants. We also review the challenges that need to be overcome, such as precise weed plant type detection, speed of the process and some security considerations that arise from the involvement of information and communication technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andújar, D., Ribeiro, Á., Fernández-Quintanilla, C., Dorado, J.: Accuracy and feasibility of optoelectronic sensors for weed mapping in wide row crops. Sensors 11(3), 2304–2318 (2011)

    Article  Google Scholar 

  2. Berge, T., Goldberg, S., Kaspersen, K., Netland, J.: Towards machine vision based site-specific weed management in cereals. Comput. Electron. Agric. 81, 79–86 (2012). https://doi.org/10.1016/j.compag.2011.11.004

    Article  Google Scholar 

  3. Bogue, R.: Robots poised to revolutionise agriculture. Ind. Robot: Int. J. 43(5), 450–456 (2016). https://doi.org/10.1108/ir-05-2016-0142

    Article  Google Scholar 

  4. Burgos-Artizzu, X.P., Ribeiro, A., Tellaeche, A., Pajares, G., Fernández-Quintanilla, C.: Improving weed pressure assessment using digital images from an experience-based reasoning approach. Comput. Electron. Agric. 65(2), 176–185 (2009). https://doi.org/10.1016/j.compag.2008.09.001

    Article  Google Scholar 

  5. Castaldi, F., Pelosi, F., Pascucci, S., Casa, R.: Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize. Precis. Agric. 18, 1–19 (2016). https://doi.org/10.1007/s11119-016-9468-3

    Article  Google Scholar 

  6. de Castro, A.I., Jurado-Expósito, M., Peña-Barragán, J.M., López-Granados, F.: Airborne multi-spectral imagery for mapping cruciferous weeds in cereal and legume crops. Precis. Agric. 13(3), 302–321 (2012). https://doi.org/10.1007/11119-011-9247-0

    Article  Google Scholar 

  7. Christensen, S., et al.: Site-specific weed control technologies. Weed Res. 49(3), 233–241 (2009)

    Article  Google Scholar 

  8. Conesa-Muñoz, J., Valente, J., del Cerro, J., Barrientos, A., Ribeiro, Á.: Integrating autonomous aerial scouting with autonomous ground actuation to reduce chemical pollution on crop soil. Robot 2015: Second Iberian Robotics Conference. AISC, vol. 418, pp. 41–53. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27149-1_4

    Chapter  Google Scholar 

  9. Popa, C.: Adoption of artificial intelligence in agriculture. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Agric. 68(1) (2011)

    Google Scholar 

  10. Dammer, K.H.: Real-time variable-rate herbicide application for weed control in carrots. Weed Res. 56(3), 237–246 (2016). https://doi.org/10.1111/wre.12205

    Article  Google Scholar 

  11. Dammer, K.H., Wartenberg, G.: Sensor-based weed detection and application of variable herbicide rates in real time. Crop Prot. 26(3), 270–277 (2007). https://doi.org/10.1016/j.cropro.2005.08.018. Weed Science in Time of Transition

    Article  Google Scholar 

  12. Davis, A.M., Pradolin, J.: Precision herbicide application technologies to decrease herbicide losses in furrow irrigation outflows in a northeastern australian cropping system. J. Agric. Food Chem. 64(20), 4021–4028 (2016)

    Article  Google Scholar 

  13. Gerhards, R., et al.: Using precision farming technology to quantify yield effects attributed to weed competition and herbicide application. Weed Res. 52(1), 6–15 (2012)

    Article  MathSciNet  Google Scholar 

  14. Gómez-Candón, D., De Castro, A.I., López-Granados, F.: Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precis. Agric. 15(1), 44–56 (2014). https://doi.org/10.1007/s11119-013-9335-4

    Article  Google Scholar 

  15. Hamuda, E., Glavin, M., Jones, E.: A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 125, 184–199 (2016)

    Article  Google Scholar 

  16. Holst, N., Rasmussen, I.A., Bastiaans, L.: Field weed population dynamics: a review of model approaches and applications. Weed Res. 47(1), 1–14 (2007). https://doi.org/10.1111/j.1365-3180.2007.00534.x

    Article  Google Scholar 

  17. Jeon, H.Y., Tian, L.F.: Direct application end effector for a precise weed control robot. Biosyst. Eng. 104(4), 458–464 (2009)

    Article  Google Scholar 

  18. Lameski, P., Zdravevski, E., Kulakov, A.: Weed segmentation from grayscale tobacco seedling images. In: Rodić, A., Borangiu, T. (eds.) RAAD 2016. AISC, vol. 540, pp. 252–258. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49058-8_28

    Chapter  Google Scholar 

  19. Lamichhane, J.R., Dachbrodt-Saaydeh, S., Kudsk, P., Messéan, A.: Toward a reduced reliance on conventional pesticides in European agriculture. Plant Dis. 100(1), 10–24 (2015). https://doi.org/10.1094/PDIS-05-15-0574-FE

    Article  Google Scholar 

  20. Loghavi, M., Mackvandi, B.B.: Development of a target oriented weed control system. Comput. Electron. Agric. 63(2), 112–118 (2008). https://doi.org/10.1016/j.compag.2008.01.020

    Article  Google Scholar 

  21. Longchamps, L., Panneton, B., Reich, R., Simard, M.J., Leroux, G.D.: Spatial pattern of weeds based on multispecies infestation maps created by imagery. Weed Sci. 64(3), 474–485 (2016). https://doi.org/10.1614/WS-D-15-00178.1

    Article  Google Scholar 

  22. López-Granados, F.: Weed detection for site-specific weed management: mapping and real-time approaches. Weed Res. 51(1), 1–11 (2011)

    Article  Google Scholar 

  23. Luck, J., Zandonadi, R., Luck, B., Shearer, S.: Reducing pesticide over-application with map-based automatic boom section control on agricultural sprayers. Trans. ASABE 53(3), 685–690 (2010)

    Article  Google Scholar 

  24. Martinez, R.C., Gonzalo, E.R., Laespada, M.E.F., San Roman, F.J.S.: Evaluation of surface-and ground-water pollution due to herbicides in agricultural areas of zamora and salamanca (Spain). J. Chromatogr. A 869(1), 471–480 (2000)

    Article  Google Scholar 

  25. Meyer, G.E., Neto, J.C.: Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 63(2), 282–293 (2008). https://doi.org/10.1016/j.compag.2008.03.009

    Article  Google Scholar 

  26. Midtiby, H.S., Mathiassen, S.K., Andersson, K.J., Jørgensen, R.N.: Performance evaluation of a crop/weed discriminating microsprayer. Comput. Electron. Agric. 77(1), 35–40 (2011). https://doi.org/10.1016/j.compag.2011.03.006

    Article  Google Scholar 

  27. Mulla, D.J.: Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 114(4), 358–371 (2013). Special Issue: Sensing Technologies for Sustainable Agriculture

    Article  Google Scholar 

  28. Niero, M., Ingvordsen, C.H., Jørgensen, R.B., Hauschild, M.Z.: How to manage uncertainty in future life cycle assessment (LCA) scenarios addressing the effect of climate change in crop production. J. Cleaner Prod. 107, 693–706 (2015). https://doi.org/10.1016/j.jclepro.2015.05.061

    Article  Google Scholar 

  29. Peña, J.M., Torres-Sánchez, J., de Castro, A.I., Kelly, M., López-Granados, F.: Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS One 8(10), e77151 (2013)

    Article  Google Scholar 

  30. Plant, R.E., Pettygrove, G.S., Reinert, W.R.: Precision agriculture can increase profits and limit environmental impacts. California Agric. 54(4), 66–71 (2000)

    Article  Google Scholar 

  31. Potena, C., Nardi, D., Pretto, A.: Fast and accurate crop and weed identification with summarized train sets for precision agriculture. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds.) IAS 2016. AISC, vol. 531, pp. 105–121. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48036-7_9

    Chapter  Google Scholar 

  32. Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A.: Yield trends are insufficient to double global crop production by 2050. PloS one 8(6), e66428 (2013)

    Article  Google Scholar 

  33. Ritter, C., et al.: An on-farm approach to quantify yield variation and to derive decision rules for site-specific weed management. Precis. Agric. 9(3), 133–146 (2008). https://doi.org/10.1007/s11119-008-9061-5

    Article  Google Scholar 

  34. Rumpf, T., Römer, C., Weis, M., Sökefeld, M., Gerhards, R., Plümer, L.: Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine. Comput. Electron. Agric. 80, 89–96 (2012). https://doi.org/10.1016/j.compag.2011.10.018

    Article  Google Scholar 

  35. Schellberg, J., Hill, M.J., Gerhards, R., Rothmund, M., Braun, M.: Precision agriculture on grassland: applications, perspectives and constraints. Eur. J. Agron. 29(2–3), 59–71 (2008). https://doi.org/10.1016/j.eja.2008.05.005

    Article  Google Scholar 

  36. Schimmelpfennig, D., et al.: Farm profits and adoption of precision agriculture. Technical report, United States Department of Agriculture, Economic Research Service (2016)

    Google Scholar 

  37. Schuster, I., Nordmeyer, H., Rath, T.: Comparison of vision-based and manual weed mapping in sugar beet. Biosyst. Eng. 98(1), 17–25 (2007). https://doi.org/10.1016/j.biosystemseng.2007.06.009

    Article  Google Scholar 

  38. Søgaard, H., Lund, I.: Application accuracy of a machine vision-controlled robotic micro-dosing system. Biosyst. Eng. 96(3), 315–322 (2007). https://doi.org/10.1016/j.biosystemseng.2006.11.009

    Article  Google Scholar 

  39. Shaner, D.L., Beckie, H.J.: The future for weed control and technology. Pest Manage. Sci. 70(9), 1329–1339 (2014). https://doi.org/10.1002/ps.3706

    Article  Google Scholar 

  40. Slaughter, D., Giles, D., Downey, D.: Autonomous robotic weed control systems: a review. Comput. Electron. Agric. 61(1), 63–78 (2008)

    Article  Google Scholar 

  41. de Soto, M.G., Emmi, L., Perez-Ruiz, M., Aguera, J., de Santos, P.G.: Autonomous systems for precise spraying - evaluation of a robotised patch sprayer. Biosyst. Eng. 146, 165–182 (2016). https://doi.org/10.1016/j.biosystemseng.2015.12.018. Special Issue: Advances in Robotic Agriculture for Crops

    Article  Google Scholar 

  42. Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., Borozan, V.: Environmental parameters monitoring in precision agriculture using wireless sensor networks. J. Clean. Prod. 88, 297–307 (2015). https://doi.org/10.1016/j.jclepro.2014.04.036. Sustainable Development of Energy, Water and Environment Systems

    Article  Google Scholar 

  43. Suarez, L., Apan, A., Werth, J.: Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield. ISPRS J. Photogram. Remote Sens. 120, 65–76 (2016). https://doi.org/10.1016/j.isprsjprs.2016.08.004

    Article  Google Scholar 

  44. Tautges, N.E., Goldberger, J.R., Burke, I.C.: A survey of weed management in organic small grains and forage systems in the northwest united states. Weed Sci. 64(3), 513–522 (2016). https://doi.org/10.1614/WS-D-15-00186.1

    Article  Google Scholar 

  45. Tellaeche, A., BurgosArtizzu, X.P., Pajares, G., Ribeiro, A., Fernández-Quintanilla, C.: A new vision-based approach to differential spraying in precision agriculture. Comput. Electron. Agric. 60(2), 144–155 (2008). https://doi.org/10.1016/j.compag.2007.07.008

    Article  Google Scholar 

  46. Tellaeche, A., Pajares, G., Burgos-Artizzu, X.P., Ribeiro, A.: A computer vision approach for weeds identification through support vector machines. Appl. Soft Comput. 11(1), 908–915 (2011). https://doi.org/10.1016/j.asoc.2010.01.011

    Article  MATH  Google Scholar 

  47. Tillett, N., Hague, T., Grundy, A., Dedousis, A.P.: Mechanical within-row weed control for transplanted crops using computer vision. Biosyst. Eng. 99(2), 171–178 (2008)

    Article  Google Scholar 

  48. Torres-Sánchez, J., López-Granados, F., De Castro, A.I., Peña-Barragán, J.M.: Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PLOS One 8(3), 1–15 (2013). https://doi.org/10.1371/journal.pone.0058210

    Article  Google Scholar 

  49. Van der Weide, R., Bleeker, P., Achten, V., Lotz, L., Fogelberg, F., Melander, B.: Innovation in mechanical weed control in crop rows. Weed Res. 48(3), 215–224 (2008)

    Article  Google Scholar 

  50. Wendel, A., Underwood, J.: Self-supervised weed detection in vegetable crops using ground based hyperspectral imaging. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5128–5135, May 2016. https://doi.org/10.1109/ICRA.2016.7487717

  51. Wiles, L.: Beyond patch spraying: site-specific weed management with several herbicides. Precis. Agric. 10(3), 277–290 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially financed by the Faculty of Computer Science and Engineering at the Sts. Cyril and Methodius University in Skopje, Macedonia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petre Lameski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lameski, P., Zdravevski, E., Kulakov, A. (2018). Review of Automated Weed Control Approaches: An Environmental Impact Perspective. In: Kalajdziski, S., Ackovska, N. (eds) ICT Innovations 2018. Engineering and Life Sciences. ICT 2018. Communications in Computer and Information Science, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-00825-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00825-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00824-6

  • Online ISBN: 978-3-030-00825-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics