Skip to main content

Amplitude Rescaling Influence on QRS Detection

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 940))

Abstract

When we record the electrical activity of the heart we generate a signal called an electrocardiogram. Within the electrocardiogram, the information that explains the heart’s health is based on the detection of QRS complexes. The focus of this paper is on a wearable ECG sensor that uses a low sampling frequency and bit resolution while it converts the analog signal to digital data. The overall goal is to see if an efficient industrial QRS detector can be developed within these constraints. In particular, we set a research question to investigate how amplitude rescaling affects sensitivity and positive predictive rate of the Hamilton algorithm for QRS detection and improved it by optimizing it based on amplitude ranges. We used the MIT-BIH Arrhythmia ECG database to evaluate performance. The original recordings are sampled with a sampling frequency of 360 Hz with a 11-bit resolution over a 10 mV range. Our experiments include testing rescaled signals on a sampling frequency of 360 Hz using different maximum amplitudes. We found that rescaling impacts performance and that the optimization parameters need to tuned to obtain the expected performance. However, the performance decreases when the maximum amplitude is lower than 9 bits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., Luo, S.: ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2), 192–202 (1999)

    Article  Google Scholar 

  2. Ajdaraga, E., Gusev, M.: Analysis of sampling frequency and resolution in ECG signals. In: 2017 25th conference on Telecommunication Forum (TELFOR), pp. 1–4. IEEE (2017)

    Google Scholar 

  3. Atkielski., A.: Schematic diagram of normal sinus rhythm for a human heart as seen on ECG, January 2007. https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg

  4. Bahoura, M., Hassani, M., Hubin, M.: DSP implementation of wavelet transform for real time ECG wave forms detection and heart rate analysis. Comput. Methods Programs Biomed. 52(1), 35–44 (1997)

    Article  Google Scholar 

  5. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  6. Gusev, M., Ristovski, A., Guseva, A.: Pattern recognition of a digital ECG. In: Stojanov, G., Kulakov, A. (eds.) International Conference on ICT Innovations, pp. 93–102. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-68855-8_9

    Chapter  Google Scholar 

  7. Gusev, M., Stojmenski, A., Guseva, A.: ECGalert: a heart attack alerting system. In: Trajanov, D., Bakeva, V. (eds.) ICT Innovations 2017. CCIS, vol. 778, pp. 27–36. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67597-8_3

    Chapter  Google Scholar 

  8. Hamilton, P.S., Tompkins, W.J.: Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed. Eng. 12, 1157–1165 (1986)

    Article  Google Scholar 

  9. Hamilton, P.: Open source ECG analysis software documentation (2002)

    Google Scholar 

  10. Kohler, B.U., Hennig, C., Orglmeister, R.: The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(1), 42–57 (2002)

    Article  Google Scholar 

  11. Li, C., Zheng, C., Tai, C.: Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)

    Article  Google Scholar 

  12. Lugovaya, T.S.: Biometric human identification based on ECG (2005)

    Google Scholar 

  13. Martínez, A., Alcaraz, R., Rieta, J.J.: Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiol. Meas. 31(11), 1467 (2010)

    Article  Google Scholar 

  14. Martínez, J.P., Almeida, R., Olmos, S., Rocha, A.P., Laguna, P.: A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4), 570–581 (2004)

    Article  Google Scholar 

  15. Milchevski, A., Gusev, M.: Improved pipelined wavelet implementation for filtering ECG signals. Pattern Recognit. Lett. 95, 85–90 (2017)

    Article  Google Scholar 

  16. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  17. Pahlm, O., Sörnmo, L.: Software QRS detection in ambulatory monitoring: a review. Med. Biol. Eng. Comput. 22(4), 289–297 (1984)

    Article  Google Scholar 

  18. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)

    Article  Google Scholar 

  19. Poli, R., Cagnoni, S., Valli, G.: Genetic design of optimum linear and nonlinear QRS detectors. IEEE Trans. Biomed. Eng. 42(11), 1137–1141 (1995)

    Article  Google Scholar 

  20. Shambi, J., Tandon, S., Bhatt, R.: Using wavelet transforms for ECG characterization. IEEE Eng. Med. Biol. 16, 77–83 (1997)

    Article  Google Scholar 

  21. Xue, Q., Hu, Y.H., Tompkins, W.J.: Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. 39(4), 317–329 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Gusev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Domazet, E., Gusev, M. (2018). Amplitude Rescaling Influence on QRS Detection. In: Kalajdziski, S., Ackovska, N. (eds) ICT Innovations 2018. Engineering and Life Sciences. ICT 2018. Communications in Computer and Information Science, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-00825-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00825-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00824-6

  • Online ISBN: 978-3-030-00825-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics