Skip to main content

Adaptive, Hubness-Aware Nearest Neighbour Classifier with Application to Hyperspectral Data

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 935))

Abstract

We present an extension of the Nearest Neighbour classifier that can adapt to sample imbalances in local regions of the dataset. Our approach uses the hubness statistic as a measure of a relation between new samples and the existing training set. This allows to estimate the upper limit of neighbours that vote for the label of the new instance. This estimation improves the classifier performance in situations where some classes are locally under-represented. The main focus of our method is to solve the problem of local undersampling that exists in hyperspectral data classification. Using several well-known Machine Learning and hyperspectral datasets, we show that our approach outperforms standard and distance-weighted kNN, especially for high values of k.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/datasets.html and http://mldata.org.

  2. 2.

    https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.

  3. 3.

    http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.

References

  1. Fix, E., Hodges, J.L., Jr.: Discriminatory analysis-nonparametric discrimination: consistency properties. Technical Report, DTIC Document (1951)

    Google Scholar 

  2. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)

    Article  Google Scholar 

  3. Romaszewski, M., Głomb, P., Cholewa, M.: Semi-supervised hyperspectral classification from a small number of training samples using a co-training approach. ISPRS J. Photogramm. Remote Sens. 121, 60–76 (2016)

    Article  Google Scholar 

  4. Ghosh, A.K.: On optimum choice of k in nearest neighbor classification. Comput. Stat. Data Anal. 50(11), 3113–3123 (2006)

    Article  MathSciNet  Google Scholar 

  5. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  6. Devroye, L., Gyorfi, L., Krzyzak, A., Lugosi, G.: On the strong universal consistency of nearest neighbor regression function estimates. Ann. Stat. 1371–1385 (1994)

    Article  MathSciNet  Google Scholar 

  7. Ouyang, D., Li, D., Li, Q.: Cross-validation and non-parametric k nearest-neighbour estimation. Econom. J. 9(3), 448–471 (2006)

    Article  MathSciNet  Google Scholar 

  8. Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: Time-series classification based on individualised error prediction. In: 2010 IEEE 13th International Conference on Computational Science and Engineering (CSE), pp. 48–54. IEEE (2010)

    Google Scholar 

  9. Tomašev, N., Mladenić, D.: Nearest neighbor voting in high-dimensional data: Learning from past occurrences. In: 2011 IEEE 11th International Conference on Data Mining Workshops (ICDMW), pp. 1215–1218. IEEE (2011)

    Google Scholar 

  10. Tomašev, N., Buza, K.: Hubness-aware kNN classification of high-dimensional data in presence of label noise. Neurocomputing 160, 157–172 (2015)

    Article  Google Scholar 

  11. Bhattacharya, G., Ghosh, K., Chowdhury, A.S.: Test point specific k estimation for kNN classifier. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 1478–1483. IEEE (2014)

    Google Scholar 

  12. Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N.M., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1(2), 6–36 (2013)

    Article  Google Scholar 

  13. Li, J., Reddy Marpu, P., Plaza, A., Bioucas-Dias, J.M., Atli Benediktsson, J.: Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(9), 4816–4829 (2013)

    Article  Google Scholar 

  14. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)

    Article  Google Scholar 

  15. Tomašev, N., Buza, K., Marussy, K., Kis, P.B.: Hubness-aware classification, instance selection and feature construction: survey and extensions to time-series. In: Stańczyk, U., Jain, L.C. (eds.) Feature Selection for Data and Pattern Recognition. SCI, vol. 584, pp. 231–262. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45620-0_11

    Chapter  Google Scholar 

  16. Biau, G., Devroye, L.: Weighted k-nearest neighbor density estimates. Lectures on the Nearest Neighbor Method. SSDS, pp. 43–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25388-6_5

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the project ‘Representation of dynamic 3D scenes using the Atomic Shapes Network model’ financed by National Science Centre, decision DEC-2011/03/D/ST6/03753. Authors would like to thank Marcin Blachnik for extended discussion on the first version of the paper and Krisztian Buza for his insightful comments and for making available the PyHubs (http://www.biointelligence.hu/pyhubs.) library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Romaszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romaszewski, M., Głomb, P., Cholewa, M. (2018). Adaptive, Hubness-Aware Nearest Neighbour Classifier with Application to Hyperspectral Data. In: Czachórski, T., Gelenbe, E., Grochla, K., Lent, R. (eds) Computer and Information Sciences. ISCIS 2018. Communications in Computer and Information Science, vol 935. Springer, Cham. https://doi.org/10.1007/978-3-030-00840-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00840-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00839-0

  • Online ISBN: 978-3-030-00840-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics