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Abstract

Functional magnetic resonance imaging (fMRI) has been widely applied to analysis and diagnosis 

of brain diseases, including Alzheimer’s disease (AD) and its prodrome, i.e., mild cognitive 

impairment (MCI). Traditional methods usually construct connectivity networks (CNs) by simply 

calculating Pearson correlation coefficients (PCCs) between time series of brain regions, and then 

extract low-level network measures as features to train the learning model. However, the valuable 

observation information in network construction (e.g., specific contributions of different time 

points) and high-level (i.e., high-order) network properties are neglected in these methods. In this 

paper, we first define a novel weighted correlation kernel (called wc-kernel) to measure the 

correlation of brain regions, by which weighting factors are determined in a data-driven manner to 

characterize the contribution of each time point, thus conveying the richer interaction information 

of brain regions compared with the PCC method. Furthermore, we propose a wc-kernel based 

convolutional neural network (CNN) (called wck-CNN) framework for extracting the hierarchical 

(i.e., from low-order to high-order) functional connectivities for disease diagnosis, by using fMRI 

data. Specifically, we first define a layer to build dynamic CNs (DCNs) using the defined wc-

kernels. Then, we define three layers to extract local (region specific), global (network specific) 

and temporal high-order properties from the constructed low-order functional connectivities as 

features for classification. Results on 174 subjects (a total of 563 scans) with rs-fMRI data from 

ADNI suggest that the our method can not only improve the performance compared with state-of-

the-art methods, but also provide novel insights into the interaction patterns of brain activities and 

their changes in diseases.

1 Introduction

As a challenging and interesting task, accurate diagnosis of Alzheimer’s disease (AD) and 

its prodromal stage, i.e., mild cognitive impairment (MCI), is very important for early 

Correspondence to: Dinggang Shen.

HHS Public Access
Author manuscript
Mach Learn Med Imaging. Author manuscript; available in PMC 2019 March 11.

Published in final edited form as:
Mach Learn Med Imaging. 2018 September ; 11046: 1–9. doi:10.1007/978-3-030-00919-9_1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



treatment and possible delay of disease progression. A large number of pattern analysis 

methods have been proposed and applied to identifying disease-related imaging markers 

from advanced medical imaging techniques, e.g., functional magnetic resonance imaging 

(fMRI). Compared with other imaging techniques, fMRI provides a non-invasive way to 

quantify the functional interaction of the cerebrum, thus providing an insight into the basic 

mechanism and cognitive processes of the human brain [1]. These interaction patterns 

among brain regions are usually characterized as connectivity networks (CNs), and used for 

brain disease analysis and diagnosis by using graph/network based methods, thus helping us 

better understand the pathological underpinnings of neurological disorder. Hence, functional 

CNs using resting-state fMRI (rs-fMRI) have been widely applied to automated diagnosis of 

AD/MCI [2].

Studies on functional CNs currently focus on two aspects: (1) traditional CNs and (2) 

dynamic CNs (DCN). The former usually implicitly assumes that functional connectivity is 

a constant (i.e., temporal stationary) throughout recording period in rs-fMRI. However, the 

dynamics of CNs are neglected in these studies. The latter focuses on the temporal changes 

of functional connectivities between specific brain regions. Numerous studies have indicated 

that the changes of functional connectivity over time may be related to cognitive and 

vigilance state [3], and is critical for better understanding the underpinnings of pathology of 

brain diseases [4]. And, studies have found that AD is associated with changes of functional 

connectivity over time [5]. All these studies usually construct the CNs by simply calculating 

the Pearson correlation coefficients (PCCs) between time series from brain regions, and then 

extract the low-level measures (e.g., clustering coefficients) from constructed CNs as 

features to train the learning model (e.g., support vector machine, SVM). However, first, in 

network construction, the valuable observation information (e.g., specific contributions of 

different time points) is neglected in these studies. Intuitively, different time points should 

have different contributions for characterizing interaction between brain regions. Second, the 

high-level (i.e., high-order) network properties that could further improve the performance 

are also neglected in feature learning step. In addition, since network construction, feature 

learning and classification are separately performed, it could yield sub-optimal learning 

model, thus decreasing the classification performance.

To address these problems and motivated by recent successful applications of convolutional 

neural network (CNN) in the natural image analysis field, in this paper we first define a 

weighted correlation kernel (called wc-kernel) for calculating the correlation between brain 

regions by using learned weights to characterize the contributions of different time points. 

Compared with the PCC method, the proposed wc-kernel can capture the specific 

contributions of different time points, thus conveying the richer interaction information 

among brain regions. Furthermore, we propose a wc-kernel based CNN (called wck-CNN) 

framework for defining/extracting the hierarchical (i.e., from low-order to high-order) 

functional connectivities for disease diagnosis, by using fMRI data. To the best of our 

knowledge, our proposed method is among the first attempt to define the correlation kernel 

in CNN for characterizing the interactions among brain regions, and explore a unified CNN 

framework for DCN construction and analysis using fMRI data. Figure 1 shows the 

architecture of the proposed wck-CNN frame-work. Specifically, we first define a layer to 

build DCNs using the defined wc-kernels. Here, multiple DCNs can be constructed using 
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multiple wc-kernels, with each DCN reflecting changes of CNs over time, thus conveying 

richer dynamic information of brain network. Then, we build other three layers to extract 

local (brain-region specific), global (network specific) and temporal high-order properties 

from the constructed low-order functional connectivities as features for classification. 

Results on 174 subjects (a total of 563 scans) with rs-fMRI data from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database demonstrate the efficacy of our method.

2 Method

2.1 Subjects and Image Preprocessing

We use a total of 174 subjects, including 48 NCs (28female (F)/20male (M), aged 76.0 ± 6.8 

years), 50 early MCI (eMCI) (30F/20M, aged 72.4 ± 7.1 years), 45 late MCI (lMCI) (18F/

27M, aged 72.3 ± 8.1 years) and 31 AD (15F/16M, aged 73.2 ± 7.3 years), with rs-fMRI 

data from ADNI database. Totally, there are 563 scans covering nine possible stages (i.e., 
baseline, 6, 12, 24, 36, 48, 60, 72 and 84 months), including 154, 165, 145, 99 scans for NC, 

eMCI, lMCI and AD subject groups, respectively. There are 147 subjects with baseline 

scans, and other 27 subjects without baseline scan. The image resolution is 2.29–3.31 mm 

for inplane and 3.31 mm for slice thickness, TE (echo time) is 30 ms and TR (repetition 

time) is 2.2–3.1 s. For each subject, there are 140 volumes.

Image pre-processing is performed for all rs-fMRI data by using a standard pipeline in FSL 

FEAT software package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT), including removing the 

first 3 volumes, slice time correction, motion correction, bandpass filtering, and regression 

of white matter, CSF, and motion parameters. The subjects with large head motion (i.e., 
larger than 2.0 mm or 2°) are discarded, since the head motion has substantial effects on 

functional CN measures [6]. Structural skull stripping is performed using FSL, which is used 

to register the fMRI to the Montreal Neurological Institute (MNI) space. The fMRI data are 

then spatially smoothed using a 6 mm Gaussian kernel. The subjects with more than 2.5 min 

of large frame-wise displacement (>0.5) are excluded in this study. The BOLD signals are 

band-pass filtered (0.015 ≤ f ≤ 0.15 Hz). The mean time series are extracted from each of the 

116 regions of interest (ROIs) by the automated anatomical labeling (AAL) template [7]. 

The time point signal from each ROI i is normalized using the following scheme:

g(z) = z − μi /σi (1)

where z corresponds to the time point signal from the ROI i, μi and σi are the mean and 

standard deviation of time series from the ROI i, respectively.

2.2 Proposed Weighted Correlation Kernel

To capture the specific contributions of different time points, we defined a weighted 

correlation kernel for calculating the correlation between brain regions, i.e.,
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k xi, x j = ∑
l = 1

L1
wlxi

lx j
l (2)

where xi is the normalized (using Eq. 1) time series of the ROI i, xi
l is the lth time point, 

w = w1, w2, …, w
L1  is a weight vector, and the kernel size is 1 × L1.

According to the definition in Eq. 2, the wc-kernel calculates the correlation between time 

series of a pair of ROIs by using a weight wl to characterize the specific contribution of each 

time point, thus conveying richer interaction information of brain regions compared with the 

PCC method, since the latter computes the correlation of brain regions using the same 

contribution for all time points (i.e., with all weights in w equaling to 1). Therefore, the 

defined wc-kernel is actually an extension of the PCC.

2.3 Architecture of the Proposed Wc-Kernel Based CNN

As shown in Fig. 1, the proposed wck-CNN framework includes four convolutional layers 

(i.e., Con1, Con2, Con3 and Con4) and two fully connected layers (i.e., FC1 and FC2). Each 

layer uses a rectified linear unit (ReLU) as the activation function, and each fully connected 

layer is followed by dropout with a rate of 0.50. The input of this model is time series of all 

ROIs, and the output (via soft-max) is the probability of the subject belonging to four 

categories (i.e., NC, eMCI, lMCI and AD). Here, M1, M2, M3 and M4 denote the numbers of 

kernels in four convolutional layers, respectively. Next, we will present the details of the 

four convolutional layers.

Con1: Connectivity Construction Layer—We define a connectivity construction 

layer for CN construction using the defined wc-kernels, with time series of ROIs as the 

input. The output of this layer with a given wc-kernel is a matrix C ∈ R
N2 × T1 as

Ci + j − 1, t = k Si
t, S j

t (3)

where k is the wc-kernel defined in Eq. 2, Si ∈ RT denotes the whole time series from the ith 

ROI, ithROI, Si
t denotes the corresponding segment of time series when performing the tth 

operation of sliding kernel along the temporal dimension (corresponding to time series of 

ROIs), T is the length of time series, T1 is the total operations of sliding kernel along the 

temporal dimension, and N is the number of ROIs.

In connectivity construction layer, the convolution along the spatial dimension 

(corresponding to any pair of ROIs) computes the functional connectivity between ROIs, 

reflecting their interactions. Thus, each column in C denotes a CN. The convolution along 

the temporal dimension computes different functional connectivities of the same pair of 

ROIs within different segments of time series (similar to the sliding window method in 

Jie et al. Page 4

Mach Learn Med Imaging. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conventional DCN construction), reflecting the changes of functional connectivity over time. 

Thus, the matrix C denotes a DCN, reflecting dynamics of CNs. Finally, the output of this 

layer with M1 wc-kernels is a 3D tensor, which includes M1 DCNs, conveying richer 

dynamic information of brain networks.

Con2: Regional Feature Layer—Following the connectivity construction layer, we 

build a regional feature layer to learn local (i.e., brain-region specific) high-order features by 

using the DCNs in connectivity construction layer. Specifically, we use the kernels with the 

size of N × L2, and set the size of stride along both dimensions (i.e., temporal and spatial 

dimensions) to (N, 1). Thus, the convolution along the spatial dimension is a feature 

mapping for each ROI by computing the weighted combination of functional connectivities 

connected to that ROI across L2(>1) neighboring time points (i.e., CNs). The convolution 

along the temporal dimension corresponds to the different feature mappings for the same 

ROI over time, reflecting temporal variability of ROI. Note that features learned in this layer 

are high-order since they are calculated based on series of functional connectivities of 

specific ROI across multiple CNs, thus characterizing temporal properties of functional 

connectivity series of specific ROI.

Con3: Brain-Network Feature Layer—Following the regional feature layer, we build 

a brain-network feature layer to learn the global (i.e., brain-network specific) high-order 

features of whole CN using brain-region specific features. Specifically, we use the kernels 

with the size of N × L3, and set the size of stride along both dimensions to (1, 1). Therefore, 

the convolution along the spatial dimension is a feature mapping for the whole CN by 

computing the weighted combination of all brain-region specific features across L3 (>1) 

neighboring time points. The convolution along the temporal dimension corresponds to 

different mappings of the whole CN over time, reflecting the temporal variability of the 

whole brain network. Similar to the regional feature layer, the features learned in this layer 

are also high-order.

Con4: Temporal Feature layer—To reduce the feature dimensionality, we further 

build a temporal feature layer to learn high-level temporal feature. Specifically, we use a 

kernel with the size of 1 × L4, set the size of stride along both dimensions to (1, 1), and 

perform an average-pooling (AP) operation after convolution for mapping all features into a 

feature. Thus, the output of this layer with a learned kernel can be used as a measure for the 

temporal variability of the whole CN.

3 Experiments

Experimental Settings:

We perform a multi-class task, i.e., NC vs. eMCI vs. lMCI vs. AD classification, by using a 

5-fold cross-validation. Specifically, the set of 147 subjects with baseline scan is (roughly) 

equivalently partition into five subsets. One subset is selected as the testing data. The 

remaining four subsets and the set of 27 subjects without baseline scan are combined as the 

training subjects. Note, to enhance the generalization of model, all scans of each training 

subject are used as training data, with each scan as an independent sample but with the same 
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class label. We evaluate the performance by computing the overall accuracy of four 

categories, and the accuracy for each category. In the experiment, we set the parameters M1 

= 16, M2 = 32, M3 = 64, M4 = 64, L1 = 70, L2 = 2, L3 = 2, L4 = 8. In connectivity 

construction layer, we set the size of stride along temporal dimension to 2. Note that other 

scans (excepting for the baseline) of the testing subjects are not used for training or testing.

We first compare the proposed method with two traditional learning methods, including (1) 

baseline method (donted as BL) and (2) SVM method with local clustering coefficients 

(denoted as SVM). In both methods, the CN of each subject is first built by computing the 

PCC between the whole time series of a pair of ROIs, and the connectivity strengths and the 

local clustering coefficients are then extracted from constructed CNs as features, 

respectively. A t-test method with the threshold (i.e., p − value < 0.05) is used for feature 

selection, followed by a linear SVM with default parameters for classification. Here, a one-

to-all strategy is used for multi-class task.

To further evaluate the contributions of the proposed method, we compare wck-CNN with its 

three variants. These variants include (1) CNN method using traditional CNs (denoted as 

CNN), (2) CNN method using DCNs (denoted as DCN-CNN), and (3) wck-CNN 

framework without using high-order feature information (denoted as wck-CNN-1). In the 

CN-CNN and DCN-CNN methods, there don’t include the proposed wc-kernel based 

network construction layer, while use the traditional CNs and DCNs as input of CNN, 

respectively. Here, the DCNs are constructed using overlapping sliding window method with 

the window length equal to 70, and the translation step equal to 2. In wck-CNN-1 method, 

no high-order features are extracted in regional feature layer and brain-network feature layer, 

i.e., setting L1 and L2 to 1.

Results:

Experimental results of all methods are summarized in Table 1. As can be seen from Table 1, 

our proposed method achieves the overall accuracy of 57.0% for four classes, while the best 

overall accuracy of competing methods is 50.0% (by regarding wck-CNN-1 still our 

method), suggesting the effectiveness of our proposed wck-CNN method. In addition, from 

Table 1, we can make four interesting observations. First, compared with traditional learning 

methods (i.e., BL and SVM), CNN-based methods (i.e., CNN, DCN-CNN wck-CNN-1 and 

wck-CNN) can achieve much higher performance, indicating that CNN can capture the 

underlying properties of brain networks, and thus can be better applied for brain network 

analysis. Second, compared with traditional CN-based methods (i.e., BL, SVM and CNN), 

DCN-based methods (i.e., DCN-CNN, wck-CNN-1 and wck-CNN) can achieve higher 

accuracies, suggesting that the dynamics of CNs can provide useful clues for better 

understanding the underpinnings of brain disease pathology, which is consistent with 

existing studies [4]. Third, the wc-kernel based methods (i.e., wck-CNN-1 and wck-CNN) 

perform better than conventional DCN based method (i.e., DCN-CNN), further indicating 

the effectiveness of our defined wc-kernel in conveying the interaction information between 

brain regions. Finally, the wck-CNN method can achieve higher performance in comparison 

with wck-CNN-1 method, demonstrating the advantage of exploring high-order information 

from brain networks.
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Connectivity Analysis:

Furthermore, we investigate the DCNs constructed by using the proposed wc-kernel based 

method. Specifically, we construct the DCNs (i.e., the output of connectivity construction 

layer) for all subjects using the model learned in the first cross-validation. We obtained 16 

DCNs for each subject with 16 wc-kernels. For simplicity, we compute the average network 

for each DCN of each subject. Then, for each wc-kernel, we compute the group difference of 

functional connectivity in average network using the standard t-test. Figure 2 gives the 

results (denoted as wck1 to wck16) between AD and NC groups. For comparison, in Fig. 2 

we also report the group difference of functional connectivity in the traditional CNs and 

DCNs constructed by the overlapping sliding windows method, respectively. Here, we 

threshold the obtained p-values (i.e., setting p-values more than 0.05 to 1) for clarity.

From Fig. 2, we can make three interesting observations for most of the proposed wc-kernel 

based DCNs, compared with traditional CNs and DCNs. First, there are more discriminative 

functional connectivities (with the corresponding p-value less than 0.05), indicating these 

DCNs are more discriminative. Second, there are more obvious patterns. For example, the 

discriminative functional connectivities focus on connection with specific regions, including 

lateral surface, parietal lobe, limbic lobe and sub-cortical gray nuclei, which have been 

widely reported in existing studies [8]. Finally, there are few discriminative functional 

connectivity among brain regions from the cerebellum, but have a few discriminative 

functional connectivities between brain regions from the cerebellum and the cerebrum, 

indicating that the cerebellum might be associated with AD and it may provide useful 

information for AD prognosis [9].

4 Conclusion

In this paper, we define a novel wc-kernel for characterizing the rich interaction information 

among brain regions, and propose a unified wck-CNN framework for DCN construction and 

analysis using fMRI data. Results on 174 subjects with a total of 563 scans from ADNI 

database demonstrate that our proposed method can not only improve the classification 

performance compared with state-of-the-art methods, but also provide insights into the 

interactions of brain activity and their changes in AD.
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Fig. 1. 
Architecture of the proposed wck-CNN framework for DCN construction and analysis using 

fMRI data. There are four convolutional layers, i.e., con1: connectivity construction layer, 

con2: regional feature layer, con3: brain-network feature layer and con4: temporal feature 

layer, and two fully connected layers (i.e., FC1 and FC2) including 64 and 32 units, 

respectively. Here, the kernel sizes in four layers are 1 × L1, N × L2, N × L3 and 1 × L4 (with 

the corresponding kernel numbers of M1, M2, M3, M4), respectively. T1, T2 and T3 denote 

the total operations of using kernel along temporal dimension for con1, con2 and con3 

layers, respectively. T is the length of time series of each ROI, and N is the number of ROIs.
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Fig. 2. 
The group difference of functional connectivity in the (dynamic) CNs constructed using 

different methods between AD and NC group. Here, p-values more than 0.05 are set to 1 

(denoted as yellow points), wck1,…, wck16 correspond to the DCNs constructed by using 

the proposed method with 16 different wc-kernels, respectively. CN and DCN correspond to 

traditional CNs and DCNs constructed by using the overlapping sliding windows method, 

respectively.
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Table 1.

Performance of all methods in NC vs. eMCI vs. lMCI vs. AD classification.

Method Accuracy AccuracyNC AccuracyeMCI AccuracylMCI AccuracyAD

CN-based methods BL 30.6 20.0 38.9 30.0 33.3

SVM 35.0 22.0 69.5 21.0 6.7

CNN 44.2 32.2 74.6 28.3 22.2

DCN-based methods DCN-CNN 50.0 38.3 53.0 53.8 58.3

wck-CNN-1 54.5 52.2 62.7 45.0 55.6

wck-CNN 57.0 68.9 52.4 56.7 44.4
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