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Abstract. Deep learning has thoroughly changed the field of image
analysis yielding impressive results whenever enough annotated data can
be gathered. While partial annotation can be very fast, manual segmenta-
tion of 3D biological structures is tedious and error-prone. Additionally,
high-level shape concepts such as topology or boundary smoothness are
hard if not impossible to encode in Feedforward Neural Networks. Here
we present a modular strategy for the accurate segmentation of neural
cell bodies from light-sheet microscopy combining mixed-scale convo-
lutional neural networks and topology-preserving geometric deformable
models. We show that the network can be trained efficiently from sim-
ple cell centroid annotations, and that the final segmentation provides
accurate cell detection and smooth segmentations that do not introduce
further cell splitting or merging.
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1 Introduction

Systematic studies of the cortical cytoarchitecture are indispensable to under-
stand the functional organization of the human brain. Classical works based on
qualitative description of cell counts and shapes in physical 2D sections of the
human cortex revealed functional areas and segregation in the brain [2,4, 15].
These brain parcellations are currently updated and refined using automated
image analysis [18]. Even 3D imaging of post mortem brain tissue at microstruc-
tural resolution are within reach using recent light sheet fluorescence microscopy

* The research leading to these results has received funding from the European
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(FP7/2007-2013) / ERC grant agreement no 616905.
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(LSFM) [7] and tissue clearing protocols [3]. Combined with advanced image
analysis these techniques enable studying cortical cellular organisation in the
human brain with unsurpassed precision. To reach this goal we need robust com-
putational analysis relying on minimal manual annotations, facing the following
challenges:

— Clearing of aged, unperfused human tissue is imperfect, and optical distor-
tions due to scattering and refraction remain. This leads to varying back-
ground intensities across the image and shading artifacts.

— The penetration of antibody stains and thus contrast is uneven across the
sample. The tissue degenerates with longer post-mortem times. These effects
increase the already high variability of neural shape and appearance across
the cortical samples (Fig.1a).

— The resolution is lower along the optical axis in the 3D stack. Additional im-
perfection in depth focusing and sample movement create artifacts through
the depth of the stack (Fig.1b).

— Cell density varies locally, leading to false segmentation of cells into clusters.

Machine Learning methods improved the analysis of microscopy data [13].
Deep Learning, in particular Convolutional Neural Networks (CNNs), can ad-
dress challenging problems in biomedical imaging because they learn multi-level
internal representations of the data [9, 13]. These, typically supervised, methods
require a lot of annotated data: For cell segmentation pixel-accurate masks have
to be supplied [12]. Manually annotating data for training is often prohibitive
in biomedical applications where data are specialized, scarce and expert knowl-
edge is required. Abstract concepts at the object level (Gestalt principles such
as continuation, closure [8], or object topology) are hard to learn with CNN.
Additional annotation of the border region between adjacent cells is needed to
reduce false merging of neighboring cells [12]. Human vision exploits high level
concepts using top-down processing [8] which is not represented in feedforward
architectures.

Active Contour methods have been designed to embody high level concepts of
object shapes. They can guarantee the smoothness of contours and a consistent
topology [1]: features that improve cell segmentation in challenging conditions
and prevent splitting and merging of contours during segmentation. But active
contour methods require an initialization with the number and approximate
position of objects in the image. Robust initial localization of cells is hard to
define a priori and should be learned from data. This is where Deep Learning
has a clear advantage: CNNs can be trained to robustly predict cell positions in
images using only sparse centroid annotations [16].

In this work we combine the complementary strengths of CNNs and topology-
aware active contours into a robust workflow to detect and segment cells that
delivers high quality results and most importantly, requires only minimal anno-
tations (sparse annotations of approximate cell centers are enough)®. Addition-

5 Related ideas integrating deep learning and level set formulations have been proposed
by [14] or [6]. In contrast to our approach based on sparse centroid annotations these
methods require pixel-accurate object masks for training.
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ally, our approach works with 2D and 3D microscopy data. Here, we demonstrate
and validate the method using 2D slices from a 3D microscopy image volume
obtained of cleared post mortem human brain blocks and as a proof of concept
we show that our methods easily extends to full 3D processing.

2 Methodology

2.1 Sample Preparation

Blocks from a human post mortem brain (temporal lobe cortex, male, 54 yr.,
post-mortem interval 96h) have been provided by the Brain Banking Centre
Leipzig of the German Brain-Net. The entire procedure of case recruitment,
acquisition of the patient’s personal data, the protocols and the informed consent
forms, performing the autopsy, and handling the autoptic material have been
approved by the local ethics committee. For details on tissue preparation and
clearing see [10].

Fig. 1. Example of image data. An xy (a) and yz (b) slice of a 1080 x 1280 x 1000m
subvolume (scale bar 100pm). (c) Direct volume rendering of cuboid volume randomly
sampled from the image stack.

2.2 Image Data

A commercial light-sheet fluorescence microscope (LaVision BioTec, Bielefeld,
Germany) was used to image the cleared specimen. The microscope was equipped
with 10x CLARITY-objective (Olympus XLPLN10XSVMP, numerical aperture
(NA) 0.6, working distance (WD) 8 mm; Zeiss Clr Plan-Apochromat, NA 0.5,
WD 3.7 mm) and operated with 630 nm excitation wavelength and band-pass
680 nm emission filter. Samples were stained with a fluorescent monoclonal anti-
body against human neuronal protein HuC/HuD (a specific marker for neuronal
cell bodies). The acquisition covered a 1.1 mm x 1.3 mmx 2.5 mm volume re-
sulting in a stack of 2601 16-bit TIFF images (2560x2160 pixels, 0.51 um lateral
resolution) using a 1 um step size.
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For the 2D analysis workflow we took 19 slices at regular intervals from the
entire stack. We used 15 images for training and validation and kept 4 images as a
test set. The images for the test set were used for final assessment of segmentation
and detection performance only. A single image typically contains around 300
cells (Fig. 1). To analyze 2D segmentation accuracy, an expert created reference
cell masks on the 2D test images. The masks were independently checked and
corrected by a second expert.

For the 3D analysis pipeline we first resampled the image stack to an isotropic
resolution of 1 ym. One expert manually annotated cell centroids for a subregion
of the size 2304x256x1280 (z,x,y), which we subsequently used for the training
and validation of the CNN for cell localization. We additionally annotated cell
centroids in three separate regions of size 256 x256x256, which served as a test
set to measure the performance of our method. As manually segmenting cells
in 3D is very laborious and error-prone we only annotated 2D reference cell
masks in regularly spaced xy, and yz planes of the test images. To validate
the agreement between annotated masks and segmentation we computed the
segmentation entirely in 3D but exported the results only in those 2D planes
that have been used for annotation.

2.3 Cell Segmentation Workflow

The proposed method is based on a Fully Convolutional Neural Network for cell
localization and a topology-preserving multi-contour segmentation [1] to control
smoothness and topology of the segmentation. To handle the different cell sizes
we use the recently proposed Mixed-scale Dense (MS-D) architecture by [11] to
robustly predict masks of cell centroid regions in 2D and 3D. The basic concept
is as follows: Training: Pairs of image stacks (annotated centroids convolved
by a spherical kernel and raw data) are fed into MS-D network. The network is
trained to directly segment a spherical region of radius 3 around the annotated
cell centroid. Prediction: MS-D predicts probability maps of cell positions from
the raw image. These centroid probabilities are thresholded and used to initialize
the active contour segmentation that segments the cells from the raw images.
The workflow is schematically depicted for the general 3D case in Fig.2.

Cell Localization For the 2D cell localization we used the MS-D architec-
ture, with a width of 8 (multi-scale feature channels), a depth of 8 and a kernel
size of 3x3 (see [11] for details). As the loss function we used the 1 — Fp score
on the binary pixel labels between reference and prediction. This score com-
bines precision (p) and recall (c) as Fz = (1 + 8?) x %. We set 5 = 0.7,
putting more emphasize on precision of the predicted cell centroid regions. For
optimization we used stochastic gradient descent with an adaptive learning rate
(ADADELTA) [17]. We trained the network on randomly sampled image sections
of size 256x256 pixels and the annotated centroids, convolved with a spherical
kernel of radius 3. We used a batch size of 8 and applied data augmentation to
the training samples in form of image rotation up to 90°. To derive cell centroids
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Fig. 2. Schematic overview of method in 3D. We train a MS-D network on man-
ually labeled cell centroids. The predicted cell positions are used as initialization and
topology prior for the multi-object geometric deformable model (MGDM).

from the MS-D predictions, we thresholded the predictions at 70% probability
level.

Eztension to 3D. For the 3D images we used a 5x8 (widthxdepth) MS-D to fit
into the GPU memory, with all 2D convolutional layers replaced by 3D convo-
lutions with corresponding kernel size of 3x3x3.

We trained the network, with a batch size of 1 and without augmentation. As
input we used pairs of randomly sampled image sections of size 96x96x96 pixels
and the annotated centroids, convolved with a 3D spherical kernel of radius 3
Predictions were thresholded at 70% probability level.

Multi-object Geometric Deformable Model Once cell centroids have been
detected, the final segmentation is handled by a Multi-object Geometric De-
formable Model (MGDM), an extension of the classical Deformable Geometric
Model which ensures fast segmentation of an arbitrarily large number of cells
while enforcing topological constraints between them [1]. The deformable model
can be driven by any number of active contour forces. For simplicity, we only
include balloon forces derived from the microscopy images and curvature regu-
larisation, as follows.

For each detected cell ¢, we first find the maximum intensity M, of the
microscopy image inside the non-zero probability region around each detected
centroid. We set the MGDM balloon forces to decrease linearly with the distance
to M,:

M. '
where I(x) is the image intensity. Because fluorescence intensity varies between
cells, this calibration ensures that each cell is within its detection range. For the
background b, we first estimate the mean overall image intensity M, (assuming
that there is significantly more background than cells) to separate background
from cells and derive a similar balloon force:

My — (I(z) — M)
M,

Fulz) = -

Fy(x) = (2)
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To avoid unstable evolution from too large forces, F, and Fj are all bounded
in [+1, —1]. These specific balloon forces are combined with classical curvature
regularisation forces in the MGDM evolution equation, with ¢, ¢, the signed
distance function level sets defining the implicit curve evolution and k., kp the
corresponding level set mean curvature for cells ¢ and background b:

¢ IPp

('%c = (Wrke + W )| Ve, el (wekp + wpFp) |V (3)
We used the same parameters for all 2D and 3D studies and fixed the weights for
curvature regularisation to w, = 0.6, and the balloon forces to w. = w, = 0.3.
The evolution was run for 200 iterations.

a) 2D results b) 3D results

Fig. 3. Segmentation result. (a) An image from the 2D test set showing (randomly
colored) outlines of segmented cell masks, subregions were magnified for better vis-
ibility. (b) Example planes from the 3D test set showing the outlines of annotated
reference masks (red) and segmentation results (blue). (All scale bars 100 pm.)

3 Results

2D cell localization and segmentation. To assess cell localization accuracy,
we compared the MS-D net prediction to the manually annotated reference cen-
troids and computed precision, recall, and the combined F1-score for the anno-
tated images. Examples of final segmentation masks on the test set are shown in
Fig.3a. The segmentation performed well across regions with varying cell appear-
ance and density. The cell localization step produced a few fusion and splitting
errors, particularly in regions where small, dim cells were concentrated (Fig.3a”).
Quantitative results were aggregated over all four test images and summarized
in Table 1. The proposed method improved cell detection and segmentation ac-
curacy. We used the fastER segmentation [5] as a reference baseline because it
produces state-of-the art results on par with deep learning methods such as [12]
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method precision recall Fl-score JI(median)
ours 0.895 0.942 0.918 0.672
adapt. threshold|0.255 0.855 0.393 0.634
FastER 0.834 0.917 0.874 0.521

Table 1. Comparison of segmentation across test set. Best results shown in bold.

and can be trained with few annotations?. We further compare our results to a
simple baseline using adaptive thresholding.

3D cell localization and segmentation. Examples of segmentation results on
a test sample are shown in Fig.2c and on 2D sub-slices in Fig.3b (blue contours).
Over the three test stacks our method achieved a good performance in 3D with a
cell localization precision of 0.81, a recall of 0.873 resulting in an F1-score of 0.84
and a median Jaccard index of 0.732 for segmentation. The MGDM segmentation
tended to result in slightly larger 3D masks compared to the manual reference as
illustrated in Fig.3b showing the annotated outlines in red and the segmentation
result in blue.

4 Conclusions

As a proof of concept we present a hybrid strategy to segment neural cells
combining a mixed-scale neural network and a topology-preserving geometric
deformable model. Our method robustly detects and segments cell bodies in
light-sheet microscopy images of cleared post mortem human brain tissue. High
quality results were obtained despite large variations in cell shape and intensity,
anisotropic resolution and challenging imaging artifacts. Our method works for
2D and 3D images and only requires sparse centroid annotations for training.
This is a crucial prerequisite for large-scale histological analysis of desired quality
as fully annotated cell segmentations are very tedious and error-prone in 3D.

While there exist many different options for multi-label segmentation given
the initial detected cell centroids, such as watersheds, graph cuts, or belief prop-
agation, we chose multi-object geometric deformable models for their ability to
constrain the cell boundary curvature and enforce topological relationships while
allowing for a flexible design of the segmentation cost function based on local
rather than global intensity variations. Thus, the method can be adapted to
alternative clearing, staining and imaging protocols.

As a next step we will systematically optimize the neural network architec-
ture, the loss function, and the forces of the MGDM segmentation to improve cell
localization and segmentation further. Another interesting advance would be to
train ensembles of networks to take the inter-network variability of predictions
into account for downstream processing.

" Note that fastER is limited to 2D images only.
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