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Abstract. Currently, non-invasive imaging techniques such as magnetic
resonance imaging (MRI) are emerging as powerful diagnostic tools for
prostate cancer (PCa) characterization. This paper focuses on automated
PCa classification on VERDICT (Vascular, Extracellular and Restricted
Diffusion for Cytometry in Tumors) diffusion weighted (DW)-MRI, which
is a non-invasive microstructural imaging technique that comprises a rich
imaging protocol and a tissue computational model to map in vivo his-
tological indices. The contribution of the paper is two fold. Firstly, we
investigate the potential of automated, model-free PCa classification on
raw VERDICT DW-MRI. Secondly, we attempt to adapt and evaluate
novel fully convolutional neural networks (FCNNs) for PCa characteri-
zation. We present two neural network architectures that adapt U-Net
and ResNet-18 to the PCa classification problem. We train the networks
end-to-end on DW-MRI data and evaluate the diagnostic performance
employing a 10-fold cross validation approach using data acquired from
103 patients. ResNet-18 outperforms U-Net with an average AUC of
86.7%. Our results show promise for the utilization of raw VERDICT
DW-MRI data and FCNNs for automating the PCa diagnostic pathway.

Keywords: VERDICT MRI · Prostate Cancer Classification · Convo-
lutional Neural Networks.

1 Introduction

Prostate cancer (PCa) is the second most common cancer among men world-
wide [1]. Early diagnosis and treatment are crucial to decrease the mortality
rate in patients. Thus, the development of reliable and automated diagnostic
tools is imperative. Currently, multi-parametric (mp)-magnetic resonance imag-
ing (MRI), which consists of T2-weighted (T2W)-MRI, diffusion-weighted (DW)-
MRI and dynamic contrast enhanced (DCE)-MRI, has become a useful tool for
non-invasive PCa diagnosis. Moreover, VERDICT (Vascular, Extracellular and
Restricted Diffusion for Cytometry in Tumors) DW-MRI, which is an advanced
microstructural imaging technique for cancer characterization has currently been
proposed as an additional, powerful diagnostic tool. However, radiological inter-
pretation of different MRI sequences for PCa characterization remains a complex
and time-consuming task.
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Several methods for automated diagnosis of PCa on mp-MRI have been pro-
posed to improve diagnostic accuracy and speed up the decision-making pro-
cess. State-of-the-art methods use deep learning to classify and localize PCa on
mp-MRI. For example, Kiraly et al. proposed a multi-channel image-to-image
convolutional encoder-decoder to classify lesions achieving an area under the
curve (AUC) of 83% [2]. Mehrtash et al. used a 3D convolutional neural network
for automated detection of PCa on mp-MRI and reported an AUC of 80% [3].
However, these studies share a common limitation, i.e., they rely on mp-MRI
data, which despite its merits has been shown to have low specificity [4].

DW-MRI has been demonstrated to be the most important component of
mp-MRI compared to T2W-MRI and DCE-MRI due to its high sensitivity to
microstructural changes related to cancer [5], [6]. However, mp-MRI studies use
DW-MRI in its simplest form by deriving the ADC map. This simplified model
of water diffusion lacks biological specificity as it fails to discriminate the variety
of histological changes that occur in cancer [7]. VERDICT DW-MRI improves
on ADC maps by modelling directly the underlying microstructure [8], [9]. More
specifically, VERDICT combines an optimized DW-MRI acquisition protocol
with a mathematical model to estimate and map microstructural features such
as cell size, density, and vascular volume fraction, all of which change in cancer.

In this paper, we first aim to investigate the potential of model-free PCa
characterization using the raw DW-MRI data from the VERDICT acquisition.
Second, we attempt to adapt and evaluate fully convolutional neural networks
(FCNNs) for automated characterization of PCa on VERDICT DW-MRI data.

2 Methods

2.1 VERDICT DW-MRI data

In this study we use VERDICT DW-MRI data from 103 patients. VERDICT
DW-MRI images (Fig. 1) were acquired with pulsed-gradient spin-echo sequence
(PGSE) using an optimised imaging protocol for VERDICT prostate character-
ization with 5 b-values (90, 500, 1500, 2000, 3000 s/mm2) in 3 orthogonal direc-
tions, on a 3T scanner (Achieva, Philips Healthcare, NL) [10]. Also, images with
b = 0 s/mm2 were acquired before each b-value acquisition. The DW-MRI se-
quence was acquired with a voxel size of 1.25×1.25×5 mm3, 5 mm slice thickness,
14 slices, a field of view of 220×220 mm2 and the images were reconstructed to
a 176×176 matrix size. The data was registered using rigid registration [11]. A
dedicated radiologist highly experienced in prostate mp-MRI reporting (report-
ing more than 1000 scans per year) contoured malignant and benign lesions on
the registered VERDICT DW-MRI using mp-MRI for guidance.

2.2 Fully Convolutional Neural Networks

We formulate the problem as pixel-wise classification and use FCNNs trained
end-to-end, on DW-MRI data. FCNNs have shown great success on pixel-wise
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(a) b = 90 s/mm2 (b) b = 500 s/mm2 (c) b = 1500 s/mm2

(d) b = 2000 s/mm2 (e) b = 3000 s/mm2

Fig. 1: VERDICT DW-MRI data acquired with 5 b-values in 3 orthogonal directions.
Cancerous regions (noted in blue) are seen as a focus of high signal intensity on DW-
MRI of b = 2000, 3000 s/mm2 and as a focus of low signal intensity on the corresponding
b = 90 s/mm2 image.

classification tasks [12], [13], [14]. They adapt standard CNNs to the pixel-wise
classification problem by converting fully connected layers to convolutional layers
and adding upsampling layers to reach the original image resolution. They get
as input the entire image and produce pixel-wise class probability maps. We
implement and evaluate two encoder-decoder FCNNs. Encoder-decoder networks
extract low resolution feature maps in the encoder module and gradually map
them to full input resolution feature maps in the corresponding decoder module
[13], [14], [15].

Objective function. We consider two classes (malignant, benign/normal) and
perform pixel-wise classification on predefined regions of interest (ROIs) on DW-
MRI data. We define a label set L = {0, 1, 2}, where 0 corresponds to be-
nign/normal, 1 to malignant and 2 to ambiguous. Let I ∈ R176×176×20 be a
20-channel DW-MRI image and L ∈ L176×176 the corresponding labelling. Also,
let P ∈ [0, 1]176×176 be the pixel-wise probability map indicating the probability
of each pixel to belong to class 1. We train the networks using pixel-wise cross-
entropy on pixels j = {j : lj 6= 2, where lj the label of pixel j}. The cross-entropy
loss is defined as

CE = −
∑
j

lj log(pj) + (1− lj) log(1− pj), (1)

where pj is the probability of pixel j belonging to class 1 and lj is the class label
of pixel j.
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Table 1: MRI-UNet. The encoder module includes 3 encoder blocks (encBlock). Each
encBlock consists of a convolutional layer (conv) followed by batch normalization (BN),
a rectified-linear unit (ReLU) and a max pooling operation (pool). The decoder module
includes 3 decoder blocks (decBlock). Each decBlock consists of a convolutional layer
followed by BN, a ReLU and a transposed convolution (convTransp). The last block
(outBlock) consists of 2 convolutional layers. The last convolutional layer is followed
by a pixel-wise softmax.

Layer Description

inBlock input 64x64 DW-MRI images

encBlock1
conv1 3x3, 64, stride 1, BN, ReLU
pool1 2x2 maxpooling, stride 2

encBlock2
conv2 3x3, 128, stride 1, BN, ReLU
pool2 2x2 maxpooling, stride 2

encBlock3
conv3 3x3, 256, stride 1, BN, ReLU
pool3 2x2 maxpooling, stride 2

decBlock1
conv4 3x3, 256, stride 1, BN, ReLU

convTransp1 2x2, 256, stride 2

dencBlock2
conv5 3x3, 256, stride 1, BN, ReLU

convTransp2 2x2, 128, stride 2

dencBlock3
conv6 3x3, 128, stride 1, BN, ReLU

convTransp3 2x2, 64, stride 2

outBlock
conv7 3x3, 64, stride 1, BN, ReLU
conv8 1x1, 2, stride 1, softmax

Table 2: MRI-ResNet. The encoder module includes 3 encoder blocks (encBlock). Each
encBlock consists of 2 convolutional layers (conv) each followed by batch normalization
(BN) and a rectified-linear unit (ReLU). The decoder module includes 3 decoder blocks
(decBlock). Each decBlock consists of a bilinear upsapmling operation (bilUp) followed
by 2 convolutional layers. The last convolutional layer is followed by a pixel-wise soft-
max.

Layer Description

inBlock
input 64x64 DW-MRI images
conv1 7x7, 64, stride 2, BN, ReLU

encBlock1
conv2 3x3, 64, stride 1, BN, ReLU
conv3 3x3, 64, stride 1, BN, ReLU

encBlock2
conv4 3x3, 128, stride 2, BN, ReLU
conv5 3x3, 128, stride 1, BN, ReLU

encBlock3
conv6 3x3, 128, stride 2, BN, ReLU
conv7 3x3, 128, stride 1, BN, ReLU

decBlock1
bilUp1 scale factor 2
conv8 1x1, 128, stride 1, BN, ReLU
conv9 3x3, 64, stride 1, BN, ReLU

decBlock2
bilUp2 scale factor 2
conv10 1x1, 64, stride 1, BN, ReLU
conv11 3x3, 64, stride 1, BN, ReLU

decBlock3
bilUp3 scale factor 2
conv12 1x1, 64, stride 1, BN, ReLU
conv13 3x3, 2, stride 1, BN, softmax
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Network Architectures. The first network (MRI-UNet) (Table 1) is based
on the U-Net architecture proposed in [13]. U-Net consists of an encoder mod-
ule and a symmetric decoder module. MRI-UNet has fewer convolutional layers
to avoid overfitting. The encoder module includes 3 encoder blocks (encBlock).
Each encBlock consists of a convolutional layer followed by batch normalization
(BN) [16], a rectified-linear unit (ReLU) [17] and a 2x2 max pooling opera-
tion with stride 2. Each convolutional layer performs 2D convolutions of the
input maps with 3x3 kernels. The decoder module includes 3 decoder blocks
(decBlock). Each decBlock consists of a convolutional layer followed by BN, a
ReLU and a 2x2 transposed convolution with stride 2 to upsample low reso-
lution feature maps. Concatenation of the upsampled feature maps with the
corresponding encoder feature maps is performed before the convolutional lay-
ers. Each convolutional layer performs 2D convolutions of the input with 3x3
kernels. The last convolutional layer is followed by a pixel-wise softmax which
provides class probability maps.

The second network (MRI-ResNet) has also an encoder-decoder structure
(Table 2). The encoder module is similar to the ResNet-18 network proposed
in [18]. We remove the max pooling layer in the beginning of the network and
the global average pooling layer at the end of the network. Also, we replace the
last fully-connected layer with a convolutional layer and decrease the number of
convolutional layers. The encoder module includes 3 encBlock. Each encBlock
consists of 2 convolutional layers each followed by BN and a ReLU. The decoder
module is similar to the one proposed in [15] and has 3 decBlock. Each decBlock
consists of a bilinear upsapmling operation followed by 2 convolutional layers.
The low resolution feature maps are bilinear upsampled by a factor of 2 and
then concatenated with the corresponding encoder feature maps. Then, a 1x1
convolutional layer followed by a 3x3 convolutional layer are applied to reduce
the number of feature maps and refine the features. The last convolutional layer
is followed by a pixel-wise softmax.

Training settings. We implement both networks using Pytorch [19]. We em-
ploy a 10-fold cross validation (CV) approach to train and test the networks. We
repeat each 10-fold CV 5 times. We train the networks for 200 epochs and select
the model which has the smallest loss on a validation set (20% of the training
set). We use stochastic gradient descent (SGD) with a mini-batch size of 32, a
constant learning rate of 1e-5, a momentum of 0.9 and a weight decay of 1e-3.

Evaluation metrics. We evaluate the binary pixel-wise classification using
average sensitivity, specificity, AUC and precision. Sensitivity, specificity and
precision are defined as

– sensitivity = TP
P , where TP is the number of true positive pixels and P is

the number of positive pixels.
– specificity = TN

N , where TN is the number of true negative pixels and N is
the number of negative pixels.

– precision = TP
FP+TP , where FP is the number of false positive pixels.
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Table 3: Average AUC, sensitivity, specificity, precision of MRI-UNet and MRI-ResNet
when evaluation is performed on i) malignant and benign ROIs (malignant vs benign
ROIs) and ii) the entire image (malignant vs all).

Networks Regions AUC sensitivity specificity precision

MRI-UNet
malignant vs benign ROIs 85.7% 75.7% 75.4% 86.2%

malignant vs all 74.1% 75.6% 47.6% 2.0%

MRI-ResNet
malignant vs benign ROIs 86.7% 71.8% 83.3% 90.0%

malignant vs all 71.9% 71.6% 57.1% 4.7%

Table 4: Average AUC, sensitivity, specificity, precision of MRI-UNet and MRI-ResNet
when evaluation is performed on i) malignant and benign ROIs (malignant vs benign
ROIs) and ii) the entire image (malignant vs all) when we use additional negative
labelled ROIs.

Networks Regions AUC sensitivity specificity precision

MRI-UNet
malignant vs benign ROIs 89.0% 82.9% 77.9% 88.8%

malignant vs all 94.2% 82.7% 91.2% 13.4%

MRI-ResNet
malignant vs benign ROIs 87.6% 86.4% 72.6% 86.7%

malignant vs all 94.0% 86.4% 88.8% 11.2%

3 Results

We perform two different experiments and report the results.

1st experiment. In the first experiment we train the networks on predefined
malignant and benign/normal ROIs and ignore the rest of the pixels. Then,
we evaluate the classification performance of the networks on i) predefined ma-
lignant and benign/normal ROIs and ii) the entire image (Table 3 ). In the
second case regions which are not labelled as malignant are considered as be-
nign/normal. Using MRI-ResNet results in slightly improved performance (AUC
of 86.7%). Figure 2 shows the receiver operating characteristic (ROC) curves of
MRI-UNet and MRI-ResNet when evaluation is performed on i) predefined ma-
lignant and benign/normal ROIs and ii) the entire image.

2nd experiment. In the previous experiment the dataset is highly unbalanced
since the number of malignant ROIs is higher than the number of benign/normal
ROIs. To address this issue, we increase the number of negative labelled ROIs
by randomly selecting and adding normal/background ROIs to the training set.
Table 4 shows the classification performance of the networks when we increase
the number of negative labelled ROIs. Using additional negative labelled ROIs
improves AUC when classification is performed on the predefined regions or the
entire image. Figure 3 shows the ROC curves of MRI-UNet and MRI-ResNet
when evaluation is performed on i) predefined malignant and benign ROIs and
ii) the entire image.

The results show that MRI-ResNet achieves an AUC of 86.7% in classify-
ing benign and malignant ROIs. A recent study which uses an encoder-decoder
network for classification of malignant and benign regions on the PROSTATEx
dataset [20] reports a maximum AUC of 83.4% using mp-MRI data and a max-
imum AUC of 80.4% using the ADC map derived from the DW-MRI data [2].
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Comparison of our results to the results of this study shows that VERDICT
DW-MRI data combined with FCNNs give comparable performance and could
be used as an alternative automated diagnostic tool for PCa classification. How-
ever, this comparison is limited due to the difference in the two datasets.

Fig. 2: 1st experiment. Receiver operating
characteristic (ROC) curves of MRI-UNet
and MRI-ResNet when evaluation is per-
formed on i) predefined malignant and be-
nign ROIs and ii) the entire image (En-
tIm).

Fig. 3: 2nd experiment. Receiver operat-
ing characteristic (ROC) curves of MRI-
UNet and MRI-ResNet when evaluation
is performed on i) predefined malignant
and benign ROIs and ii) the entire image
(EntIm).

4 Conclusion

We investigate the potential of model-free PCa classification on the raw VER-
DICT DW-MRI data using FCNNs. For this purpose, we adapt and evaluate
two FCNN architectures. Previous studies are based on mp-MRI data to pro-
vide an automated solution for PCa classification. In this study, we use richer
DW-MRI compared to DW-MRI from mp-MRI acquisitions, acquired for 5 b-
values in 3 orthogonal directions to train and evaluate the FCNNs. MRI-ResNet
behaves better than MRI-UNet achieving an AUC of 86.7% in classifying ma-
lignant and benign regions. The results indicate that VERDICT DW-MRI data
combined with FCNNs show promise as an alternative diagnostic tool for PCa
classification.

Future work will address the PCa classification problem in the entire image.
The proposed networks are not suitable for PCa classification in the entire image
due to foreground-background class imbalance characterizing the data. To ad-
dress this issue we plan to include an additional step for prostate segmentation
so as to limit the analysis on the prostate region. Finally, we plan to investigate
techniques to provide visual explanations of decision from FCNNs models, which
is crucial for medical diagnosis applications.
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