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Abstract. Computer aided diagnostic (CAD) system is crucial for modern med-

ical imaging. But almost all CAD systems operate on reconstructed images, 

which were optimized for radiologists. Computer vision can capture features 

that is subtle to human observers, so it is desirable to design a CAD system op-

erating on the raw data. In this paper, we proposed a deep-neural-network-based 

detection system for lung nodule detection in computed tomography (CT). A 

primal-dual-type deep reconstruction network was applied first to convert the 

raw data to the image space, followed by a 3-dimensional convolutional neural 

network (3D-CNN) for the nodule detection. For efficient network training, the 

deep reconstruction network and the CNN detector was trained sequentially 

first, then followed by one epoch of end-to-end fine tuning. The method was 

evaluated on the Lung Image Database Consortium image collection (LIDC-

IDRI) with simulated forward projections. With 144 multi-slice fanbeam pro-

jections, the proposed end-to-end detector could achieve comparable sensitivity 

with the reference detector, which was trained and applied on the fully-sampled 

image data. It also demonstrated superior detection performance compared to 

detectors trained on the reconstructed images. The proposed method is general 

and could be expanded to most detection tasks in medical imaging. 

Keywords: Computer aided diagnosis, Artificial neural networks, Computed 

tomography. 

1 Introduction 

Computer aided diagnostic (CAD) systems could effectively reduce the intensity of 

doctors’ work by providing fast and high-quality candidates, therefore increase the 

efficiency of clinical process. Nearly all the current CAD systems operate on the re-

constructed images, which are optimized for human observers rather than computers, 

which could potentially capture details that are subtle to human eyes. In some applica-

tions where low-dose or reduced sampling exist, it is often up to the radiologists to 

resolve the trade-off between accuracy and noise suppressing [1], but the solution 

may not be the best choice for CAD systems.  
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In recent years, there were considerably number of works on using deep neural 

networks as CADs, for various applications including segmentation, detection, diag-

nosis, etc. [2]. They demonstrated superior performance compared against conven-

tional handcrafted features when given enough training data. However, all these neu-

ral networks were still trained from the reconstructed images, thus they may suffer 

from the non-optimality of the image quality.  

Reconstruction algorithms generate images from the original raw data by solving 

inverse problems. Recently proposed deep-neural-network-based reconstruction algo-

rithms approximate iterative reconstruction process with neural networks, which was 

trained to minimize the errors between reconstructed images and the ground truth 

[3][4]. When given enough training data, the deep-neural-network-based reconstruc-

tion algorithms could recover more details and maintain better signal-to-noise ratio 

(SNR) than conventional iterative or image-based methods.  

There is an emerging trend on end-to-end signal processing with deep neural net-

works, and related works include voice recognition, self-driving cars, etc. [5][6] It 

was demonstrated that end-to-end deep neural networks had improved performance 

compared to multiple-step learning in these applications.  

In this paper, we proposed an end-to-end deep neural network which predicts the 

location of lung nodules in the computed tomography (CT) images from raw data. 

The network first converted the raw data to image data with a reconstruction sub-

network that approximate a 5-iteration-unrolled primal-dual algorithm; then a 3-

dimesional convolutional neural network (3D-CNN) was incorporated as the detection 

sub-network to locate lung nodules in the images. For more efficient training, the 

reconstruction sub-network was trained first, followed by the training of the detection 

sub-network with the reconstructed images. Finally, an end-to-end fine tuning was 

done on the entire network to maximize the detection performance only. The method 

was implemented on The Lung Image Database Consortium image collection (LIDC-

IDRI) [7], where undersampled CT was simulated from the images with 144 projec-

tions per rotation. The proposed method’s detection performance and robustness to 

noises was evaluated and compared against the multiple-step method. The recon-

structed images were also analyzed for better understanding of the neural networks.  

2 Methodology 

2.1 Overview 

Although it is desirable to apply neural networks directly on the raw data, the low 

coherence between the acquisition and image made local signals in the image domain 

spreading out in the raw data domain, which lead to difficulty in utilizing the highly 

efficient CNNs. Furthermore, a detection CAD system should give the position of 

lesions in the image domain. Hence, our proposed end-to-end network was consisted 

of the reconstruction sub-network, which mapped the raw data to the image domain; 

and the detection sub-network, which gave the spatial position of the lesions.  
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Patch-based detector with fixed window size was used. Denote the raw data as 𝐩, 

the reconstruction sub-network as 𝑅(𝐩; 𝛉), the detection sub-network as 𝐷(𝐱; 𝛈) , the 

patch-wise cross entropy was minimized during training: 

𝛉, 𝛈 = arg min
1

𝑁
∑ ∑ 𝐻(𝐷(𝐄𝑖𝑗𝑅(𝐩𝑖; 𝛉); 𝛈), 𝑙𝑖𝑗)

𝑗i

(1) 

where 𝑁 is the total number of patches; 𝐩𝑖 is the raw data of the ith scan; 𝐸𝑖𝑗  is the 

patch extraction matrix for the jth patch from the ith scan; 𝑙𝑖𝑗  is the label of the patch 

ij, which was 1 for patches containing nodule centers and 0 for the rest. 𝐻(⋅,⋅) is the 

cross entropy loss.  

Directly solving (1) yields slow training due to the heavy computational loads of 

the reconstruction sub-network and the relatively slow convergence of the detection 

sub-network. To improve training speed, the training was split into 3 steps: training of 

the reconstruction sub-network, training of the detection sub-network, and end-to-end 

fine tuning. 

2.2 Reconstruction Sub-Network 

The reconstruction sub-network 𝑅 was firstly trained to minimize the L2 error be-

tween the reconstructed images and the ground truth: 

𝛉1 = arg min
1

𝑁1

∑‖𝑅(𝐩𝑖; 𝛉) − 𝐱𝑇𝑖‖2
2

𝑖

(2) 

where 𝑁1 is the total number of training images and 𝐱𝑇𝑖  is the ground truth image 

corresponding to the ith scan.  

Many choices of 𝑅 exist, most of which realize finite iteration of existing algo-

rithms with neural network, by replacing the part related to the prior term with traina-

ble CNNs [3][4]. The entire neural network could then be trained through (2). Thor-

ough studies are yet to be done for comparison between various network structures, 

and in this study the primal-dual framework was incorporated [3]. 5 unrolled itera-

tions were used, and the model parameters were chosen so that the training could be 

accomplished in a reasonable time.  

Furthermore, due to the relative large memory footprint of the reconstruction sub-

network, it was infeasible to feed it with large number of slices. Instead, the primal-

dual network took only a few adjacent slices (e.g. 3), and the final reconstructed im-

ages was the aggregation from different slices. Denote the primal-dual network as 

𝑅𝑃𝐷(𝐩; 𝛉), then 𝑅(𝐩; 𝛉) could be written as: 

𝑅(𝐩; 𝛉) =
∑ 𝐖𝑘

𝑇𝑅𝑃𝐷(𝐖𝑘𝐩; 𝛉)𝑘

∑ 𝐖𝑘
𝑇𝐖𝑘𝟏𝑘

(3) 

where 𝐖𝑘 is the matrix to extract the kth sub-slices from the raw data 𝐩. 𝟏 is an all-

ones matrix with the same size of 𝐩. The structure of the primal-dual network is 

demonstrated in figure 1.  



4 

 

Fig. 1. The structure of the primal-dual network: (a) general structure; (b) structure of 𝐶𝑁𝑁𝑝𝑖 

and 𝐶𝑁𝑁𝑑𝑖 . 𝐳𝑖  and 𝐲𝑖  are primal and dual variables respectively, and we used 𝑁𝑝𝑟𝑖𝑚𝑎𝑙 =

𝑁𝑑𝑢𝑎𝑙 = 2 in the study. 𝐱0 had 3 slices (channels), so 𝐳𝑖 and 𝐲𝑖 both had 6 channels. 𝐱𝑁 is the 

reconstructed image.  Cout equals to the number of channels of 𝐳𝑖 or 𝐲𝑖. 

2.3 Detection Sub-Network 

After training of 𝑅(p; θ1), patches were randomly extracted from the reconstructed 

images and the detection sub-network 𝐷 was trained as: 

𝛈1 = arg min
1

𝑁
∑ ∑ 𝐻(𝐷(𝐄𝑖𝑗𝑅(𝐩𝑖; 𝛉1); 𝛈), 𝑙𝑖𝑗)

𝑗𝑖

(4) 

where the notations were the same with that of (1), except that only 𝛈 was optimized.  

The detector incorporated in this work was the 3D-CNN proposed in [8]. A patch 

was considered positive if the center of a non-small lung nodule is within the patch. 

Flips along the three axes were used for data augmentation because of its simplicity, 

but any augmentation that is expressible by matrix multiplication could fit into the 

proposed framework. The detection network is demonstrated in figure 2.  

 

Fig. 2. The structure of the detection network. The modules with the dashed boxes did not use 

padding, and the rest used zero padding if applicable. 

2.4 End-to-End Fine Tuning 

After the two sub-networks were sequentially trained, one epoch of training of (1) 

was carried out with initial values set as 𝛉1  and 𝛈1. The gradient backpropagation 

from the detection sub-network to the reconstruction sub-network could be derived by 

chain rule of derivatives. 

2.5 Inference 

During inference from raw data 𝐩, the detector 𝐷 was applied on sliding windows on 

𝑅(𝐩; 𝛉), followed by a non-max suppressing (NMS) step to get the final detection. 
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3 Simulation Setup 

3.1 Data Source 

The LIDC-IDRI dataset was used for the simulation. It contains 1,018 chest CT scans 

from various scanners and each image was annotated by 4 radiologists. The detection 

task was set to detect the non-small nodules (nodules with ≥ 3mm diameter), because 

imaging of small nodules is not stable for the used CT protocols.  

All the images were resampled to 1 × 1 × 2 mm3, and forward projected in a mul-

ti-slice fanbeam geometry with equal angular detectors. 144 projections per rotation 

were used, and the detector had 736 units per layer with a pixel size of 1.2858 × 2 

mm2. The source-center and source-detector distances were 595 mm and 1086.5 mm.  

The neural networks were trained on noiseless simulated data, but Poisson noise 

with equivalent initial photon number of 1 × 105 and 5 × 104 per ray were added at 

the test time to evaluate the robustness of the neural networks against inconsistency.  

3.2 Training Parameters 

The dataset was split into the training set and testing set with 916 and 102 scans re-

spectively. The training parameters for the neural networks were as follows: 

Reconstruction Sub-Network. The primal-dual network 𝑅𝑃𝐷 took 3 adjacent layers 

as input and realized 5 iterations of the primal-dual algorithm. The initial images were 

taken as the filtered backprojection (FBP) results. Adam optimizer with learning rate 

of 1 × 10−4  was used, with 𝛽1 = 0.9 and 𝛽2 = 0.999 . 50 samples were randomly 

extracted from each scan, and 1 epoch was run for the training.  

Detection Sub-Network. A patch size of 32 × 32 × 16 was used for sampling. For 

each annotation on non-small nodules, the sampling was augmented by randomly 

translation between [-8, 8] mm and flipping along 3 axes for 20 times, which generat-

ed 60 to 80 positive samples for each nodule (each nodule was annotated 3 to 4 times 

by different radiologists). 

All the negative samplings kept a safe margin of 64 mm from any positive sam-

plings. A 5-time augmented sampling was done for each non-nodule annotation. 400 

patches were randomly extracted inside the lung whereas 100 patches were randomly 

extracted on the edge of the lung mask for each scan. The mask was derived from the 

FBP results. 

The same Adam optimizer in the reconstruction sub-network was used here. 10 

epochs of training were done with a minibatch size of 50. 

End-to-End Fine Tuning. The same patch sampling coordinates were used with that 

for the detection sub-network. For each minibatch, 32 layers were extracted, and Ad-

am optimizer was applied to the patches within the extracted layers. For each scan, 
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multiple sub-layer extractions were done to cover all the patches once. 1 epoch of fine 

tuning was done with the same Adam optimizer in the previous steps.  

3.3 Evaluation 

For each testing scans, the detector was applied on sliding windows inside the lung 

masks with step size of 4 mm. NMS was then applied with intersection over union 

(IoU) threshold of 0.5. Free-response receiver operator curve (FROC) analysis was 

done with 1,000 bootstrapping to evaluate the detection performance [9], where a true 

positive was count if a nodule center was within the positive patch. Mean FROC 

scores were also calculated as the mean value of the sensitivities at 1/8, 1/4, 1/2, 1, 2, 

4, 8 false positives per scan.  

4 Results 

4.1 FROC analysis 

Figure 3 gave the results of FROC for various detectors under 3 different noise levels. 

The end-to-end method was compared against the detector based on the FBP results 

and the two-step approach, where the primal-dual network was trained first and the 

detector was trained on its reconstruction results. Furthermore, the same detector was 

trained on the original resampled images to provide a reference FROC performance.  

The noiseless FROC results demonstrated significant improvement of the end-to-

end approach over the two-step approach. Results from the proposed method was also 

comparable to the reference results when average false positives per scan were within 

[1,4]. When small amount of noise (𝑁0 = 1 × 105) was added, the performance of 

end-to-end detector remained almost the same, whereas the separately trained detec-

tors’ performance was obviously decreased. The performance of the end-to-end detec-

tor further deteriorated when the noise level increased, but its advantage over the 

separately trained detector was maintained.  

The mean FROC scores are listed in table 1. It could be noted that end-to-end de-

tector had a higher FROC score when 𝑁0 = 1 × 105 compared to the noiseless situa-

tion. It indicated that the noise had little influence on the detector, and the gain of 

score was due to normal detector performance noises.  

Table 1. Mean FROC scores 

Noise level Reference FBP Two-step End-to-end 

None 0.636 0.563 0.560 0.608 

N0 = 1 × 105 N/A 0.549 0.538 0.615 

N0 = 5 × 104 N/A 0.525 0.512 0.587 
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Fig. 3. FROC of different detectors: (a) noiseless performance; (b) performance with 1 × 105 

photons per ray; (c) performance with 5 × 104 photons per ray. “Reference” refers to detection 

on original resampled images; “FBP” refers to detection on FBP results; “Two-step” refers to 

detection on primal-dual results; “End-to-end” refers to the proposed method. Only the mean 

value from the bootstrapping was shown for better visual effect.  

4.2 Reconstructed Images 

One slice from the reconstructed images is shown in figure 4, where the contrast to 

noise ratio (CNR) was calculated for a nodule in the slice. The two-step result had the 

best visual performance, whereas the end-to-end result had the undersampling streak 

artifacts. However, the better detection performance of the end-to-end detector indi-

cated the difference between human observer and the computer vision, where the 

latter could ignore such structured noise for the detection task.  

Though there existed subtle visual differences between the two-step and end-to-end 

results except for the streak artifacts, the gain on CNR was significant for the end-to-

end result, which could be one of the reasons lead to better detection performance. 

Note that both two-step and end-to-end results had larger CNR than the reference 

result. The former was because of the existence of noises in the original images, the 

latter was because of the gain in contrast.  

 

Fig. 4. Reconstructed axial images from different methods. The CNRs were calculated from the 

nodule within the red circle against the background within the green circle. The display window 

is [-1400, 200] HU.  

5 Conclusion and Discussion 

In this paper we proposed an end-to-end lung nodule detection system for under-

sampled CT data, where a reconstruction sub-network and a detection sub-network 
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were trained end-to-end to maximize the detection performance. The end-to-end 

methods achieved comparable performance with the detector trained on the fully-

sampled data and had a significant gain over two-step methods. The proposed method 

is general and could be easily applied to other detection tasks and other modalities in 

medical imaging.  

Although the training relied on simulation data, its robustness against moderate 

noise was also validated in the simulation. The results indicated that if the simulation 

does not significantly bias from the reality, the trained neural network should be gen-

eralizable enough to assure acceptable performance on real data.  

Training-from-scratch had the potential to reach better solution than the current fi-

ne-tuning scheme, but it was too time consuming because of the heavy computational 

load of the training of reconstruction network, which required the entire slice as input 

and could not be broken into patches.  

It is acknowledged that neither the reconstruction nor the detection sub-networks 

were carefully chosen or optimized in the current study. But the advantage of the end-

to-end method should be maintained with different reconstruction or detection mod-

ules, since the solution to the two-step method could be further optimized in the end-

to-end framework. We are actively working with more advanced detection and recon-

struction neural networks [10].  
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