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Abstract. High-resolution (HR) magnetic resonance images (MRI) provide de-
tailed anatomical information important for clinical application and quantitative 
image analysis. However, HR MRI conventionally comes at the cost of longer 
scan time, smaller spatial coverage, and lower signal-to-noise ratio (SNR). Re-
cent studies have shown that single image super-resolution (SISR), a technique 
to recover HR details from one single low-resolution (LR) input image, could 
provide high quality image details with the help of advanced deep convolutional 
neural networks (CNN). However, deep neural networks consume memory heav-
ily and run slowly, especially in 3D settings. In this paper, we propose a novel 
3D neural network design, namely a multi-level densely connected super-resolu-
tion network (mDCSRN) with generative adversarial network (GAN)–guided 
training. The mDCSRN trains and inferences quickly, and the GAN promotes 
realistic output hardly distinguishable from original HR images. Our results from 
experiments on a dataset with 1,113 subjects shows that our new architecture 
outperforms other popular deep learning methods in recovering 4x resolution-
downgraded images and runs 6x faster. 
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1 Introduction 

High spatial resolution MRI produces detailed structural information, benefiting clini-
cal diagnosis, decision making, and accurate quantitative image analysis. However, due 
to hardware and physics limitations, high-resolution (HR) imaging comes at the cost of 
long scan time, small spatial coverage, and low signal to noise [1]. The ability to restore 
an HR image from a single low-resolution (LR) input would potentially overcome these 
drawbacks. Therefore, single image super-resolution (SISR) is an attractive approach, 
as it requires only a LR scan to provide an HR output without extra scan time. But SR 
is a challenging problem because of its underdetermined nature [2]. An infinite number 
of HR images can produce the same LR image after resolution degradation. This makes 
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it very difficult to accurately restore texture and structural details. A large portion of 
previous methods frame SR as a convex optimization problem, to find a plausible HR 
solution while balancing regularization terms [1, 3]. However, regularization terms re-
quire a priori knowledge of the image distribution, often based on experimental as-
sumptions. Popular constraints like total variation implicitly assume that the image is 
piecewise constant, which is problematic for images with many local details and tiny 
structures. On the other hand, learning-based approaches do not require such well-de-
fined priors. Especially, deep learning-based techniques have shown great improve-
ment in SISR for images with abundant details, because of its non-linearity and extraor-
dinary ability to imitate accurate transformation between LR and HR in difficult cases. 
Super-Resolution Convolutional Neural Networks (SRCNNs) [4] and their more recent 
Faster-SRCNNs (FSRCNNs) [5] draw a lot of attention as they showed that simple 
structured CNNs can produce outstanding SISR results of 2D natural images. 

However, those previous adapted deep-learning approaches do not fully solve the 
puzzle in the medical image SR problem. First, many medical images are 3D volumes, 
but previous CNNs only work slice by slice, discarding information from continuous 
structures in the third dimension. Second, 3D models have far more parameters than 
2D models, raising a challenge in memory consumption and computational expenses, 
making them less practical. Finally, the most widely used optimization objective of 
CNN is pixel/voxel-wise error like mean squared error (MSE) between model estima-
tion and the reference HR. But as mentioned in [6], MSE and its derivative Peak Signal 
to Noise Ratio (PSNR) do not directly represent the visual quality of restored images. 
Thus, using MSE as the only target leads to overall blurring and low perceptual quality.  

In this paper, we propose a 3D Multi-Level Densely Connected Super-Resolution 
Networks (mDCSRN) to fully solve the above problems. By utilizing a densely con-
nected network [7], our mDCSRN is extremely light-weight. When optimized by in-
tensity difference, it provides the state-of-art performance while keeping the model 
much smaller and faster. Then when trained with a Generative Adversarial Network 
(GAN), it improves further, outputting sharper and more realistic-looking images. 

2 Method 

Our proposed SISR neural network model aims to learn the image prior for inversely 
mapping the LR image to the reference HR image. The model only takes LR images to 
produce SR images. During the training, HR reference will be used to guide the opti-
mization of the model’s parameters. During deployment, SR images can be generated 
by the model based on the input LR. Details are provided in the followings: 

2.1 Background 
The resolution downgrading process from an HR image X to a LR image Y can be pre-
sented as: 
 𝑌 = 𝑓(𝑋), (1) 
where f is the function causing a loss of resolution. The SISR process is to find an 
inverse mapping function 𝑔(⋅) ≈ 𝑓+,(⋅) to recover HR image 𝑋- from a LR image Y:  
 𝑋- = 𝑔(𝑌) = 𝑓+,(𝑌) + 𝑅, (2) 
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where 𝑓+, is the inverse of 𝑓 and R is the reconstruction residual.  
In a CNN SISR approach, three different steps are optimized together: feature ex-

traction, manifold learning, and image reconstruction. During the training, the differ-
ence between reconstructed images and ground truth images is not only used to adjust 
reconstruction layer to restore better images from manifold, but also to guide extraction 
of accurate image features. This mingling of different components makes it possible for 
neural network to achieve state-of-art performance among other SISR techniques [4]. 

2.2 Training a SR network with GAN 
The most intuitive way to optimize the reconstruction is by minimizing the voxel wise 
difference such as absolute difference (L1 loss) or mean square error (L2 loss). How-
ever, minimizing L1 or L2 loss leads to solutions which resemble a voxel-wise average 
of possible HR candidates, which does not penalize the formation of artificial image 
features at the neighbor or patch level. Thus, the output tends to be over-blurred and 
implausible to the human eye. For better optimization, we incorporated the idea from 
Ledig et al [6] to use a Generative Adversarial Network (GAN)–based loss function. 

The GAN framework has two networks: a generator G and a discriminator D. The 
basic idea of a GAN is to train a G to produce images with rich details while simulta-
neously training a D to distinguish the given image as either real or generated. At the 
end of the training, D will be a very good classifier to separate real and generated im-
ages, while the G can generate realistic looking images according to D. The advantage 
of using GAN is that it can be optimized without a predesigned loss function for a 
specific task. In SISR, SRGAN was proposed by [6], who showed that adding GAN’s 
D loss to guide the G’s training yields high perceptual quality. 

However, training of a GAN presents its own challenges. During training, G and D 
must be balanced to evolve together. If either of them becomes too strong, the training 
will fail, and G can learn nothing from D. For 2D natural images, a lot of effort have 
been made to stabilize the training process. However, these approaches greatly rely on 
the network structure and have yet to be described for newer architectures like Dense-
Net. To stabilize the training process, the Wasserstein GAN (WGAN) authors [8] ob-
served that the failure of GAN training is due to its optimization toward Kullback-
Leibler divergence between real and generated probability. When there is little or no 
overlap between them, which is very common in the early stage of training, the gradient 
from the discriminator will vanish and the training will stall. To address this issue, 
WGAN was proposed. Its loss function approximately optimizes Earth Mover (EM) 
distance, which can always guide the generator forward. WGAN enables almost fail-
free training and produces quality as good as vanilla GAN. Additionally, the EM dis-
tance between real and generated images from D can be regarded an indicator of the 
image quality. In this work, we used WGAN for additional guiding during training. 

2.3 Need for Efficient 3D Super-Resolution Network 
It has been shown that 3D super-resolution models outperforming 2D counterparts by 
a large margin, thanks to the fact that 3D model directly learns the 3D structure of MRI 
volumetric images [9]. However, one significant drawback of a 3D model is that 3D 
deep learning model usually has a much larger number of parameters due to the extra 
dimensions of convolutional filters. For example, a relatively shallow 2D FSRCNN has 
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only 12,000 parameters while its 3D version has 65,000, a >5x difference. The number 
of parameters determines the model size and computation cost of a deep learning net-
work, which is a key issue to consider for practical use. 

Recently, DenseNet has shown that by using dense skip connections, we can dra-
matically reduce the network size while maintaining state-of-art performance in natural 
image classification. Yet, even memory-efficient DenseNets have too many parameters 
when constructed in 3D. The basic idea of densely connection from DenseNet was ap-
plied here, but we also include a new architecture that uses an extra level of skip con-
nections. This not only helps to reduce the parameter number but also speeds up the 
computation. We discuss the detailed design of mDCSRN in the following section. 

2.4 Proposed 3D Multi-Level Super-Resolution Network 

 
Fig. 1. Architecture of (A) DenseBlock with 3x3x3 convolutions and (B, C) mDCSRN-GAN 
Network. The G is b4u4(4 blocks, each has 4 unites) mDCSRN. The first convolutional layer 
outputs 2k (k=16) feature maps, and each compressor shrinks down the feature maps to 2k via a 
1x1x1 convolution. The final reconstruction layer is an another 1x1x1 convolution. The D is 
identical to SRGAN except BatchNorm is replaced by LayerNorm, suggested by WGAN-GP. 

A recent study [9] shows that Densely Connected Super-Resolution Network (DCSRN) 
with a single DenseBlock, is already capable of capturing image features and restoring 
super-resolution images, outperforming other state-of-art techniques. But further im-
provement of the network performance is required to make use of a deeper model to 
catch more complex information in SR process. However, the memory consumption of 
a DenseNet increases dramatically as the number of layers increases, which makes it 
not feasible to train or deploy a deeper DCSRN. 

To address this problem, we propose a multi-level densely connected structure, 
where a single deep DenseBlock is split into several shallow blocks. As shown in 
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Fig.1(B), each DenseBlock takes the output from all previous DenseBlock and is di-
rectly connected to reconstruction layer, following the same principle of DenseNet. 
Those skip connections provide direct access to all former layers including the input 
enables uninterrupted gradient flow, which is proven to be more efficient and less over-
fit. However, unlike original DenseNet, there is no pooling layer in mDCSRN, so 
mDCSRN can make full use of information in full resolution. 

Another improvement is to add a 1x1x1 convolutional layer as a compressor before 
all the following DenseBlocks. One key attribute to empower deep learning models to 
generalize so well is that the model has an information compression that forces the 
model to learn universal features to avoid overfitting. In our design, the compressors 
bottleneck the network to the same width for each DenseBlock. This is expected to 
provide at least two benefits: 1) To reduce the memory consumption from hyperboli-
cally to linearly dependent on depth; 2) To equally weight each DenseBlock, preventing 
later DenseBlocks (which takes care of conceptual level image features) from dominat-
ing the network with more parameters, thereby forcing the network not to overlook 
local image features that are central to the super-resolution task. 

2.5 Design of Loss Function 
In our work, we utilized gradient penalty variants of WGAN, namely WGAN-GP to 
speed up the training convergence. Our loss function has two parts: intensity loss 
𝑙𝑜𝑠𝑠345  and GAN’s discriminator loss 𝑙𝑜𝑠𝑠678: 
 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠345 + 𝜆𝑙𝑜𝑠𝑠678 (3) 
where 𝜆 is a hyperparameter that we set to 0.001. We used the absolute difference (L1 
loss) between network output SR and ground truth HR images as the intensity loss:  
 𝑙𝑜𝑠𝑠345 = 𝑙𝑜𝑠𝑠:,/LHW = ∑ ∑ ∑ @𝐼B,C,DEF − 𝐼B,C,DHF @I

BJ,
K
CJ,

L
DJ, /𝐿𝐻𝑊 (4) 

where 𝐼B,C,DHF  is the super-resolution output from the deep learning model and 𝐼B,C,DEF  is the 
ground truth HR image patch. We use GAN’s discriminator loss as the additional loss 
to the SR network: 
 𝑙𝑜𝑠𝑠678 = 𝑙𝑜𝑠𝑠P678,Q = −𝐷P678,S(𝐼HF) (5) 
where 𝐷P678,S is the discriminator’s output digit from WGAN-GP for SR images. 

2.6 LR Images Generation  
To evaluate an SR approach, we need to generate LR images from ground truth HR 
images. LR images are generated following the same steps as in [9]: 1) converting HR 
image into k-space by applying FFT; 2) downgrading the resolution by truncating outer 
part of 3D k-space with a factor of 2x2; 3) converting back to image space by applying 
inverse FFT and linearly interpolating to the original image size. This mimics the actual 
acquisition of LR and HR images by MRI scanners. 

3 Experiments 

3.1 Dataset and Data Preparation 
To better demonstrate the generalization of the deep learning model, we used a large 
publicly accessible brain structural MRI database, the human connectome project. 3D 
T1W images from a total of 1,113 subjects were acquired via Siemens 3T platform 
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using 32-channel head coil on multiple centers. The images come in high spatial reso-
lution as 0.7 mm isotropic in a matrix size of 320x320x256. These high-quality ground 
truth images provide detailed small structures, which is a perfect case for SR project. 
The whole dataset is split into 780 training, 111 validation, 111 evaluation and 111 test 
samples by subject. No subjects nor image patches appear twice in different subsets. 
Validation set is used for monitoring training process and evaluation set is used for 
hyper-parameters selection. We only use test set for final performance evaluation to 
avoid fine-tuning model favorable to test set data. 

The original images were used as ground-truth HR images, and then degraded to LR. 
We used the exact same process of patching and data augmentation as in [9]. However, 
we merged the patches without overlapping, which makes model run even faster and 
results in less blurring. We left a margin of 3 pixels to avoid artifacts on the edge. 

3.2 Training Parameters and Experiment Setting 
The models were implemented in Tensorflow on a workstation with Nvidia GTX 
1080TI GPU. The DenseBlock in mDCSRN setting is similar with DCSRN, where all 
3D convolutional layers had filter with size 3x3x3, growth rate k=16. For comparison, 
we picked up relatively small network FSRCNN [9] and more complicated state-of-art 
SRResNet [6]. We selected the same hyper-parameters according to 2D FSRCNN [5]. 
And we extended the 2D convolution to 3D for both FSRCNN and SRResNet. 

For non-GAN networks, ADAM optimizer with a learning rate 10-4 was used to min-
imize the L1 loss function with a batch size of 2. We trained for 500k steps as no sig-
nificant improvement afterward. For GAN experiments, we transfer the weights from 
well-trained mDCSRN in non-GAN training as the initial G. For the first 10k steps, we 
trained the discriminator only. After then for every 7 steps of training discriminator, we 
trained the generator once; and every 500 steps we train discriminator for an extra 200 
step alone, which makes sure that discriminator is always well-trained, as suggested in 
WGAN. Adam optimizer with 5x10-6 is used to optimize both G network for 550k steps, 
with little improvement after that. 

To demonstrate the effectiveness of mDCSRN compared with DCSRN, we made 
four different network setups with varied block number(b) and unit number(u). A net-
work with single 8-unit DenseBlock is annotated as b1u8 and a network with four 
DenseBlocks each has 4 dense-units is annotated as b4u4, respectively. We used three 
image metrics: subject-wise average structural similarity index (SSIM), peak signal to 
noise ratio (PSNR), and normalized root mean squared error (NRMSE), to measure the 
similarity between SR image and reference HR image in the 2x2 down-sampled plane. 

3.3 Results 

The quantitative results from non-GAN approaches are shown in Table 1. The param-
eters and running speed of each networks are also listed in Table 1. DCSRN b1u8 and 
mDCSRN b2u4 had the same depth of network, but the later obtained marginally better 
results and reduce parameters and running time by more than 30%. Among all variants, 
the largest network b4u4 has the best performance without too much sacrifice in speed. 
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mDCSRN b4u4 was compared with bicubic interpolation as well as other neural net-
works FSRCNN and SRResNet (Table 2.). mDCSRN obtained a large advantage 
against FSRCNN methods and is slightly better than SRResNet but runs more than 6x 
faster. Additionally, our mDCSRN-GAN provides much sharpened and visually plau-
sible images compared with non-GAN approaches. Fig. 2 demonstrates super-resolu-
tion results of one random subject in the 2x2 resolution degrading plane. Among non-
GAN methods, the small vessels in mDCSRN are more distinguishable than in other 
neural networks. However, mDCSRN-GAN provides much better overall image qual-
ity: not only does the vessel maintains the same shape and size as in the ground-truth 
HR image, but the gaps between vessel and gray matter are also much clearer (see red 
arrows). The mDCSRN-GAN result is almost indistinguishable from the ground truth. 

4 Conclusion  

We have presented a novel SISR method based on 3D mDCSRN-GAN for MRI. We 
showed that mDCSRN-GAN can recover local image textures and details more accu-
rately, and 6 times more quickly than current state-of-art deep learning approaches. 
This new technique would allow 4-fold reduction in scan time while maintaining virtu-
ally identical image resolution and quality. 

Table 1. The results of SSIM, PSNR and NRMSE for different DCSRN architectures. With the 
same depth, b2u4 has a slightly better performance than b1u8 with less number of parameters 
and computation operation. The deepest network b4u4 had an average runtime for a whole 3D 
MRI of a subject just around 20 seconds while has the best performance. 

 DCSRN b1u8 mDCSRN b2u4 mDCSRN b3u4 mDCSRN b4u4 
 SSIM PSNR NRMSE SSIM PSNR NRMSE SSIM PSNR NRMSE SSIM PSNR NRMSE 

mean 0.9371 35.35 0.0906 0.9381 35.46 0.0895 0.9402 35.56 0.0884 0.9424 35.88 0.0852 
std 0.0053 0.79 0.0038 0.0053 0.78 0.0038 0.0052 0.79 0.0038 0.0051 0.78 0.0038 

#parm 0.307M 0.200M 0.304M 0.412M 
#ops 1.247M 0.813M 1.236M 1.672M 

Time(s) 13.20 9.74 15.13 20.87 

Table 2. Performance comparison between bicubic interpolation, 3D FSRCNN, 3D SRResNet 
and our proposed mDCSRN b4u4. mDCSRN provides similar image quality to SRRestNet but 
6x faster and provides much better image quality than bicubic interpolation and FSRCNN. 
*FSRCNN has large CNN kernels (size: 5 and 9) that are extremely computationally expensive, 
though small #ops, it takes longer time than mDCSRN which only has small filters (size: 3). 

 Bicubic Interpolation 3D FSRCNN* 3D SRResNet mDCSRN b4u4 
 SSIM PSNR NRMSE SSIM PSNR NRMSE SSIM PSNR NRMSE SSIM PSNR NRMSE 

mean 0.8377 29.07 0.1873 0.9211 34.11 0.1045 0.9412 35.71 0.0869 0.9424 35.88 0.0852 
std 0.0088 0.90 0.0087 0.0059 0.77 0.0042 0.0052 0.79 0.0038 0.0051 0.78 0.0038 

#parm - 0.064M 2.005M 0.412M 
#ops - 0.261M* 8.043M 1.672M 

Time(s) - 21.27 132.71 20.87 
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Fig. 2. Illustration of the nearest neighbor(NN) and bicubic interpolation, 3D FSRCNN, 3D 
SRResNet, mDCSRN, mDCSRN-GAN reconstruction results, and corresponding HR images. 
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