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Abstract. Arterial spin labelling (ASL) is a noninvasive imaging modal-
ity, used in the clinic and in research, which can give quantitative mea-
surements of perfusion in the brain and other organs. However, because
the signal-to-noise ratio is inherently low and the ASL acquisition is
particularly prone to corruption by artifact, image processing methods
such as denoising and artifact filtering are vital for generating accurate
measurements of perfusion. In this work, we present a new simultaneous
approach to denoising and artifact removal, using a novel deep convolu-
tional joint filter architecture to learn and exploit spatio-temporal prop-
erties of the ASL signal. We proceed to show, using data from 15 healthy
subjects, that our approach achieves state of the art performance in both
denoising and artifact removal, improving peak signal-to-noise ratio by
up to 50%. By allowing more accurate estimation of perfusion, even in
challenging datasets, this technique offers an exciting new approach for
ASL pipelines, and might be used both for improving individual images
and to increase the power of research studies using ASL.

1 Introduction

Arterial spin labelling (ASL) is an MR imaging technique that allows quantita-
tive, noninvasive measurements of perfusion in the brain and other organs. ASL
has demonstrated its utility in both research and clinical use, and has the poten-
tial to be used as a biomarker in several diseases [1]. However, ASL suffers from
the twin problems of having low signal-to-noise ratio (SNR) and being prone to
artifacts from patient motion, RF coil instability and several other sources.

Typically, to address these problems, denoising and artifact filtering are used.
Denoising uses statistical properties of the ASL signal to improve the effective
SNR, for example by modelling the signal using total variation priors, a wavelet
basis, or anatomy-derived spatial correlation [2, 3]. Denoising methods tend to
assume Gaussian noise, and are not usually robust to non-Gaussian artifacts,
for example due to patient motion or hardware instability. Artifact filtering



methods, conversely, remove or down-weight parts of the ASL signal that have
severe artifacts, allowing subsequent processing to assume Gaussian noise [4–7].

Denoising and artifact removal are usually considered in isolation from one
another, but are overlapping problems: noise is often neither strictly Gaussian
nor spatially homogeneous, and artifact filtering often results in the rejection of
entire image volumes when only a fraction of the image is thoroughly corrupted.
In this work, we develop a deep convolutional neural network (CNN) for simul-
taneous denoising and artifact filtering, making full use of the available data.
Inspired by cutting-edge developments in computer vision, we create a novel
deep learning architecture that can relate noisy, artifact-corrupted ASL images
to the true underlying perfusion. This architecture uses joint convolutional fil-
tering [8] in order to efficiently extract spatio-temporal information from the
ASL signal, allowing our method to distinguish artifact from noise. We present
results from our method in ASL data from 15 healthy volunteers, showing that
our method improves on the state of the art for both artifact filtering and de-
noising, increasing the peak SNR by up to 50%. These promising initial results
show that deep convolutional joint filtering holds great promise for ASL pro-
cessing, and suggest our approach might be useful both for improving individual
subjects’ images and for increasing the statistical power of neuroimaging studies.

2 Methods

2.1 Arterial spin labelling

ASL images are acquired by tagging blood magnetically – applying inversion
pulses at the neck before the blood flows to the brain. Images are acquired
with and without this tagging, with the difference between these images being a
function of the blood flow. Standard models exist in the literature to relate the
measured signal to the underlying perfusion [9, 1].

In this work, we use an ASL dataset from 35 healthy 19-year-old volunteers
(F/M=17/18). Images were acquired on a 3T Phillips Achieva with 2D EPI
pseudo-continuous ASL using 30 control-label pairs, PLD=1800ms+41ms/slice,
τ = 1650ms, 3 × 3 × 5mm. We also acquired M0 images and 3D T1-weighted
volumes at 1mm isotropic resolution. All ASL data were motion corrected via
rigid registration before being used – note, however, that motion correction often
does not fully compensate for subject motion, and this is one of the artifacts that
should ideally be filtered when estimating the true perfusion.

2.2 Deep convolutional joint filtering

Convolutional neural networks (CNNs) are a well-established means of process-
ing images for a variety of tasks. Here, we focus on pixel-to-pixel networks: in
general terms, we wish to take input images and produce a higher quality out-
put image. Although CNNs show state of the art performance in natural image
processing [8], their application to ASL images has, to date, been limited to
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Fig. 1: Architecture diagram for our deep convolutional joint filter. For the mean-
only filter, the ASL variance input is not used.

Hadamard-encoded ASL, and has had limited success [10]. Part of the reason
may be the great benefit to ASL processing of spatio-temporal models: it is easier
to distinguish artifact from perfusion when one is aware of whether a particular
part of the signal was transient or permanent [2]. Processing a sequence of several
3D images rapidly becomes computationally expensive, however. Our solution
is to explicitly feed in temporal variance information so the network has two
inputs: the mean ASL signal, and the ASL signal variance over time.

The naive approach to using spatio-temporal information would be to feed
the signal mean and variance maps into the same CNN, similarly to colour
channels in a natural image. However, initial testing showed poor performance,
as the network was unable to translate voxel-level features into meaningful cross-
channel information. To achieve this end, we created a novel joint convolutional
filter architecture, inspired by image processing approaches to integrating RGB
cameras and depth sensors [8]. In our architecture, information is extracted
and processed in parallel from the mean ASL image and the ASL temporal
variance. These images are combined at a later stage in the network, with several
more layers used to extract meaningful features from their combination. Skip
connections in the parallel stages improve network convergence and robustness,
as well as transferring global information in the learning process [8].

To train our models, we first identified artifact-corrupted volumes using the
filtering method of Tan et al [4]. We generated gold standard high-quality perfu-
sion maps by removing these outlying volumes and using all of the remaining data
to fit perfusion according to literature recommendations [1]. These gold standard
images were used as ground truth. The inputs to our network were derived by
taking 10 random volumes from the ASL series, including artifact-corrupted vol-
umes to train the network to correct for artifacts in addition to denoising. The
loss function used was mean squared error within the brain mask.

We implemented our CNNs in Keras,using the Adam optimiser with learning
rate 0.01 with 20 subjects for training and 15 subjects for validation. To avoid
overfitting and improve generalisation, we augmented with random translations
sampled uniformly up to 5mm in each dimension. We also augmented input
images with Gaussian noise, magnitude approximately 1% of the ASL noise as
estimated from gold standard data. We trained to convergence (approximately
1000 iterations), which took 12 hours using an NVIDIA K80 graphics card.



2.3 Comparison to pre-existing methods and validation

For both denoising and artifact filtering, we compare our method with a state of
the art spatial regularisation technique using total generalised variation (TGV),
which has been shown to produce reliable and accurate denoising with built-in
artifact rejection via robust statistics [2]. For reference, we also compare against
voxelwise fitting with no spatial regularisation – this remains a very common
way to process ASL data, and acts as a representative baseline.

We evaluate our method, using the full spatio-temporal information as dis-
cussed in Section 2.2, and we also evaluate a simpler CNN architecture using
only spatial information (see Figure 1), to show the benefit of the joint filter.
We evaluate the performance by examining filtered images for residual artifacts,
and by producing maps of absolute error relative to the gold standard perfu-
sion map. These are shown in Figure 2. We show slices from subject 7, where
there is extreme artifact; and subject 4, with less severe artifact. Subsequently
we perform quantitative validation by calculating the PSNR for each denoising
method, again calculated relative to the gold standard1.

Often, outlier filtering is performed as a separate step prior to denoising; so
we also compare against TGV and voxelwise fitting with explicit outlier rejection
via z-score filtering [4]. Our validation dataset was chosen such that each subject
contains one or more artifact volumes, as identified by z-score filtering on the
full dataset. We remove artifact volumes for the reference methods, showing how
they would perform in conjunction with z-score filtering. For our joint filter,
however, we do not remove the volumes in this comparison, as the purpose of
the joint filter was to use the non-artifact information within partially-corrupted
images. As before, we evaluate example images from subjects 4 and 7, and then
we present quantitative validation over all subjects using PSNR calculations.

3 Results

3.1 Example images

Figure 2 shows example axial slices from subjects 4 and 7, as well as maps
of absolute error. For subject 7, there is a strong hyperintense ring artifact
near the front of the brain. Similarly, for subject 4, several artifacts present as
extreme intensity changes, mostly near the edges of the brain. Voxelwise fitting
shows these most plainly in both subjects, as the fitting has no implicit artifact
removal. TGV results in heavily smoothed images, removing some of the artifact
seen in the voxelwise images, but also losing detail in the image. CNN mean-only
smooths away even more spatial detail than TGV, and shows a similar pattern
of artifact to voxelwise fitting. However, the joint filter produces a significantly
less artifact-prone image, as well as improved denoising.

Figure 3 shows example axial slices for subjects 4 and 7 again, this time
preprocessed with artifact removal as a separate step. This is a more realistic

1 PSNR = 20 log10 (Smax/RMSE), where Smax is the maximum ASL signal over all
voxels and RMSE is the root mean square error
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Fig. 2: Example fits and errors, no separate artifact filtering step.

comparison – certainly for voxelwise smoothing, which has no built-in artifact
rejection. Here, the mean-only CNN performs closer to the joint CNN, although
the joint CNN continues to produce visibly better denoising. Moreover, the re-
maining artifacts have been better removed by the joint CNN, despite the joint
CNN being the only method to have no explicit artifact rejection before fitting.

3.2 Quantitative evaluation via PSNR

Figure 4 shows the PSNR for each subject and method, when there is no ex-
plicit artifact filtering. Because there are relatively few ASL images, and there is
large inter-subject variability in the artifacts and global perfusion, PSNR varies
greatly across subjects. To assist comparison between methods, Figure 4 shows
change in PSNR relative to voxelwise fitting for each subject. The joint CNN
produces the best result in all subjects except subject 15, where TGV performs
marginally better. The average per-subject improvement of the joint CNN over
TGV is 1.25dB (p < 0.01), although for some subjects with extreme artifact
the improvement can be as high as 6dB. Crucially, while the mean-only CNN
is often worse than TGV, the joint filter outperforms it significantly (p < 0.05
for each) in 11/15 subjects, marginally in 3/15 subjects, and is marginally worse
(0.72dB, p = 0.07) only in subject 15. Although joint filtering does not always
produce significantly better results than the mean-only CNN, it is significantly
better than the mean-only CNN (p < 0.05) in nine subjects.
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Fig. 3: Example fits and errors, separate artifact filtering performed before fitting.

Figure 5 shows the PSNR for each subject and each method, when there
is an explicit artifact filtering step as described in Section 2.3. Joint filtering
again performs the best, always better than or comparable to the runner-up.
Joint filtering is significantly (p < 0.05) better than TGV in 13/15 subjects,
and marginally superior in subjects 9 and 13. The average improvement over
TGV per subject is 1.64dB (p < 0.001). Moreover, the second-best method is
typically the mean-only CNN – with this explicit filtering step, even the mean-
only CNN consistently outperforms TGV filtering (p < 0.05 for 12/15 subjects).
This is reasonable: when there is less artifact influence, temporal information
is less important and the problem becomes one of spatial regularisation, where
CNNs excel. Additionally, TGV often performs worse than voxelwise fitting –
over-regularising the fits based on the scarce data remaining after filtering.

4 Discussion and conclusions

As demonstrated by the visible improvements in image quality (Figure 2) and
the significant increase in PSNR (Figure 4), our joint filtering approach performs
better than state of the art for denoising in the presence of artifact. Of particular
note is the filter’s strong performance in artifact removal – in subject 7, for
example, a prominent edge artifact is removed completely from the output image
without any appreciable drop in denoising. The superior performance of the joint
filter, compared with a mean-only CNN, shows the value in providing temporal
variance information when processing artifact-prone data.
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Fig. 4: PSNR for each subject and method, no separate artifact filtering step.
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Compared with pipelines involving separate filtering and denoising, our method
again outperforms state of the art (Figures 3 and 5). By retaining parts of a cor-
rupted volume, more information can be used in denoising, meaning the joint
filter performs better than mean-only CNN filtering in most subjects. This is
evidence the joint filter is able to perform better, on average, than combining a
simpler CNN approach with explicit artifact filtering. Moreover, even the mean-
only CNN is itself an advance on state of the art: this approach outperforms
TGV in 12/15 subjects when filtering is applied separately.

Future work will involve validation across different ASL acquisitions and sub-
ject populations, leading the way for use in neuroimaging studies and the clinic.
Future work might also explore alternative ways to exploit temporal information,
for example through a recurrent-convolutional architecture. More importantly,
any method should handle variations in ASL data such as readout and label type.
Currently this requires retraining on each new dataset, but it may be possible
for a single network to handle these different cases. Finally, a limitation of this
work is the necessity for higher-quality data (e.g. more ASL volumes) in a subset
of subjects for training; so we wish to explore how cross-validation derived loss
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Fig. 5: PSNRs with artifact filtering before denoising as described in Section 2.3.



functions might ameliorate this. To this end, transfer learning may be helpful to
reduce the computational cost of retraining in several cross-validation folds.

The innovative joint approach to denoising and artifact filtering presented
here has the potential to substantially increase the quality of ASL images, even
salvaging datasets that were previously considered unusable. By fusing temporal
variance information with spatial information in a novel network architecture,
our deep convolutional joint filter method outperforms state of the art in both
denoising and filtering. Our method is applicable to any ASL data, subject to
training requirements, and could even be used in other imaging modalities. Con-
sequently, deep convolutional joint filtering presents an exciting future direction
for medical image processing in noisy and artifact-prone modalities, and may
eventually be used to improve the statistical power of neuroimaging studies.
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