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Abstract. Reconstructing a high-resolution (HR) volume from motion-
corrupted and sparsely acquired stacks plays an increasing role in fetal
brain Magnetic Resonance Imaging (MRI) studies. Existing reconstruc-
tion methods are time-consuming and often require user interaction to
localize and extract the brain from several stacks of 2D slices. In this pa-
per, we propose a fully automatic framework for fetal brain reconstruc-
tion that consists of three stages: 1) brain localization based on a coarse
segmentation of a down-sampled input image by a Convolutional Neural
Network (CNN), 2) fine segmentation by a second CNN trained with a
multi-scale loss function, and 3) novel, single-parameter outlier-robust
super-resolution reconstruction (SRR) for HR visualization in the stan-
dard anatomical space. We validate our framework with images from
fetuses with variable degrees of ventriculomegaly associated with spina
bifida. Experiments show that each step of our proposed pipeline out-
performs state-of-the-art methods in both segmentation and reconstruc-
tion comparisons. Overall, we report automatic SRR reconstructions that
compare favorably with those obtained by manual, labor-intensive brain
segmentations. This potentially unlocks the use of automatic fetal brain
reconstruction studies in clinical practice.

1 Introduction

Fetal Magnetic Resonance Imaging (MRI) has become increasingly important for
prenatal diagnosis as a complementary tool to prenatal sonography. To mitigate
the effect of fetal (and maternal) motion, fast imaging methods such as Single-
Shot Fast Spin Echo (SSFSE) are used to acquire thick, low-resolution (LR) 2D
slices that can largely freeze in-plane motion. However, in order to assess and
quantify fetal pathology, it is highly desirable to reconstruct a single isotropic,
high-resolution (HR) volume. Existing reconstruction toolkits generally rely on
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an iterative motion-correction/reconstruction approach [3, 6, 9]. Since the posi-
tion and orientation of the fetal brain vary significantly between patients in rela-
tion to maternal structures, localizing the fetal brain and obtaining a segmented
mask to exclude the surrounding tissues is crucial for achieving accurate motion-
correction. At present, this usually requires manual localization of the fetal brain
and uses manual or semi-automatic methods to obtain fetal brain masks, which
is laborious and time consuming. To avoid this, [1] reconstructs the entire field-
of-view by breaking each slice into patches. However, in addition to increased
computational requirements, this leads to non-rigid motion-correction and there-
fore suboptimal outcomes for rigidly moving regions such as the fetal brain. We
believe that a fully automatic reconstruction pipeline based on automatic brain
localization, extraction (segmentation) and robust reconstruction steps is favored
to achieve accurate fetal brain reconstructions and potential clinical translation.

Several works investigate automatic fetal brain localization and segmenta-
tion. In [7], these are performed by an automatic reconstruction pipeline using
a Support Vector Machine and Random Forests, but these are limited by hand-
crafted features and testing inefficiency. The template-based automatic method
proposed in [11] takes hours for localization. Convolutional Neural Networks
(CNN) are used in in [10] for fast slice-based fetal brain segmentation but can
easily obtain false positives and show poor performance for challenging cases.

Robust super-resolution reconstruction (SRR) methods for fetal MRI have
been proposed previously to prevent slice misregistrations from affecting the
SRR outcome [3, 6]. However, in [3] no complete outlier rejection is achieved
and the method in [6] relies on multiple hyperparameters to be tuned in order to
achieve optimal reconstructions while both require time-consuming optimization
methods due to their resulting non-convex problem formulation.

We propose a novel framework for automatic fetal brain reconstruction from
fetal MRI as shown in Fig. 1. First, we propose a coarse segmentation-based
localization using a CNN. Second, we use a multi-scale loss function for training a
second CNN to obtain a fine segmentation of the fetal brain. Third, we introduce
an effective complete outlier-rejection approach for robust SRR that relies only
on a single hyperparameter and retains a linear least-squares formulation. The
proposed framework is validated by producing HR 3D volumes from MR images
of fetuses with spina bifida (SB) aperta who were assessed prior to and after
in-utero open surgical repair. This procedure is performed in selected fetuses
and improves neurological outcome compared to a postnatal repair [8].

2 Methods

Localization based on Coarse Segmentation. Differently from traditional
top-down object localization methods using sliding window classification or bound-
ing box regression, we use a bottom-up strategy for fetal brain localization based
on a coarse segmentation by a CNN with pixel-level prediction. The framework
is theoretically applicable to different CNN models, and we select P-Net [12]
for its compactness and efficiency. We refer to this localization task network as
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Fig. 1. The proposed fully automatic framework for fetal brain reconstruction.

P-Net (L). Let I denote a stack of slices and Ii represent the i-th 2D slice of I.
To reduce the inference time in this stage, we down-sample Ii to I ′i with a given
size 96×96. We use I ′ to denote the whole down-sampled stack. As shown in
Fig. 1(a), to get a 3D bounding box of the fetal brain, we first use the P-Net (L)
to obtain a segmentation of I ′ by stacking the 2D segmentations, i.e., a coarse
segmentation, which is smoothed by morphological closing and opening. Then
we fit a 3D bounding box to the largest connected component of the smoothed
segmentation. The 3D bounding box is rescaled to the original space of I and
expanded by a margin of 5 mm, and used as the localization result.

Fine Segmentation. After localization, we use a second CNN to obtain a fine
segmentation of the fetal brain. We consistently use the P-Net structure [12] for
the fine segmentation and refer to it as P-Net (S). As shown in Fig. 1(b), P-
Net (S) works on the extracted region of I based on the localization result, rather
than the entire image of I, to reduce false positives. The commonly adopted
logistic loss and Dice loss function for image segmentation use a sum of pixel-
wise losses, without considering the relationship between neighboring pixels. This
can result in noise and spatial inconsistency in the prediction. To alleviate this
problem, we propose a training loss function across multiple scales LS(Y, Ŷ ) :=
1
S

∑S
s=1 l(Ys, Ŷs) where Y is the prediction of an image given by the segmentation

CNN, Ŷ is the corresponding ground truth and S is the number of scales. Ys
and Ŷs are the rescaled versions of Y and Ŷ at scale s, respectively. Here, the
rescale operation at scale s is implemented by average pooling with a kernel size
2s−1 × 2s−1. l(·) is a basic loss function, e.g, logistic or Dice loss. When S > 1,
l(·) encourages the prediction to be close to the ground truth at a higher level.

Outlier-Robust Super-Resolution Reconstruction. Taking advantage of
these brain segmentations, we deploy a mask-guided rigid motion correction for
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all masked slices yk followed by an outlier-robust SRR step to recover the most
likely HR volume xi which satisfies the slice acquisition model yik ≈ Ai

kx
i [3] with

a linear slice-acquisition operator Ai
k for reasonably well motion-corrected slices

yik at iteration i. The SRR is solved using a maximum a-posteriori formulation

xi := arg min
x

( ∑
k∈Kiσ

1

2
‖yik −Ai

kx‖2`2 +
α

2
‖∇x‖2`2

)
s. t. x ≥ 0 (1)

for a slice-index set Kiσ :=
{

1 ≤ k ≤ K : Sim(yik, A
i
kx

i−1) ≥ σ
}

containing only
slices in high agreement with their simulated counterparts projected from the
previous HR iterate according to a similarity measure Sim and parameter σ > 0.
α ≥ 0 denotes a regularization parameter and ∇ the differential operator. We
thus have a convex SRR problem with complete outlier removal in a linear least-
squares formulation that is efficiently solvable using matrix-free operations [2].

3 Experiments and Results

Data and Implementation. The automatic reconstruction framework was
applied to a cohort of 16 fetuses with SB, scanned at University Hospitals KU
Leuven before (B1) and after (B2) surgical treatment at the gestational age (GA)
of 23.47 ± 0.92 weeks and 25.73 ± 1.28 weeks, respectively. For each study, 3
to 10 SSFSE stacks in different planes were collected, with pixel size 0.63 mm to
1.58 mm and slice thickness 3 mm to 6 mm.

For detection and segmentation, separate cohorts of 30 healthy and 16 fetuses
with SB (before treatment) with GA 29.51 ± 4.46 weeks and GA 23.60 ± 3.11,
respectively, were used for training (126 stacks) and validation (12 stacks). The
groups B1 (119 stacks) and B2 (105 stacks) were used for testing. Manual seg-
mentations of the fetal brains were used as the ground truth for the segmentation
task. The bounding box of the manual segmentation was extended by 5 mm and
used as the ground truth for fetal brain localization. Stack intensities were nor-
malized by its mean and standard deviation. Our CNNs were implemented in
TensorFlow using NiftyNet [5]. We used S = 4 scales for LS and used Dice loss
as the basic loss function. We used Adaptive Moment Estimation (Adam) for
training, with initial learning rate 10−3, weight decay 10−7 and 10k iterations.

The SRR algorithm was applied to the B1 and B2 cases using the obtained
automatic segmentations for the rigid slice-to-volume registrations. The image
data was preprocessed using ITK bias field and linear intensity correction. Three
two-step rigid slice-to-volume registration and outlier-robust SRR iterations were
performed whereby Sim was set to be normalized cross-correlation (NCC) and σ
was empirically set to be 0.6, 0.65 and 0.7 per iteration to account for increasing
accuracy in (1), respectively. The regularization parameter α = 0.02 was de-
termined using L-curve studies. Final SRRs were reconstructed in the standard
anatomical space by using a brain-volume matched template from a spatiotem-
poral atlas [4]. The outlier-robust SRR part was implemented in Python using
ITK and the LSMR solver for (1). It is made open-source on GitHub1.

1 https://github.com/gift-surg/NiftyMIC
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Table 1. Quantitative evaluation of different methods for fetal brain localization with
∗ denoting significant differences based on a paired t-test (p < 0.05).

IoU (%) Centroid distance (mm) Stack-level
runtime(s)Group B1 Group B2 Group B1 Group B2

Keraudren et al. [7] 72.87±10.37 69.18±11.73 7.31±4.58 7.68±2.83 15.03±3.54
P-Net (L) 84.74±5.55∗ 83.67±5.04∗ 3.70±2.10∗ 4.51±2.45∗ 2.35±1.02∗

Table 2. Quantitative evaluation of fetal brain segmentation with ∗ denoting significant
better performance compared with P-Net (S) based on a paired t-test (p < 0.05).

Dice (%) Hausdorff (mm) Stack-level
runtime(s)Group B1 Group B2 Group B1 Group B2

Salehi et al. [10] 90.12±4.19 88.57±4.24 14.75±7.51 12.08±6.63 1.98±0.76
P-Net (S) 91.56±3.33 90.93±4.95 10.93±5.66 9.83±5.29 3.65±1.34
P-Net (S) + ML 93.87±2.79∗ 92.94±4.14∗ 6.94±4.29∗ 7.84±3.26∗ 3.66±1.33

Localization and Segmentation Results. Table 1 summarises the localiza-
tion results of P-Net (L) compared against the method of Keraudren et al. [7]
using the Intersection over Union (IoU) score and the centroid distance between
the localized and the ground truth bounding box. A visual comparison is pro-
vided in the supplementary material. P-Net (L) was trained using the manual
segmentations as pixel-wise annotations. Fig. 2 presents a visual comparison of
three methods for fetal brain segmentation applied to Group B1 and Group B2
respectively: 1) Salehi et al.2 [10], applying the U-Net to the whole input image
for segmentation without a localization stage, 2) P-Net (S) trained with the ba-
sic Dice loss function (at a single scale), and 3) P-Net (S) + ML where P-Net (S)
was trained with our proposed multi-scale loss function. Both P-Net (S) and P-
Net (S) + ML were applied to the output of P-Net (L). The method of Salehi et
al. [10] has a lower performance than our coarse-to-fine segmentation methods.
P-Net (S) + ML achieves a better spatial consistency with reduced noises in
the segmentation than P-Net (S). Quantitative evaluation of these segmentation
methods is presented in Table 2, which shows that the proposed multi-scale loss
for training leads to higher segmentation accuracy than P-Net (S).

Outlier-Robust SRR Results. Out of the 32 performed reconstructions, six
were discarded3 from the final evaluation leaving 13 cases for each B1/B2 group.
For each reconstruction 3/5.7/6/8 (min/mean/median/max) stacks were used.
Three different configurations were tested to analyze the input-mask-sensitivity
of our proposed SRR algorithm: Reconstructions were performed using the out-
put rectangular masks of P-Net (L), the output masks of P-Net (S) + ML and

2 We followed the implementation at https://bitbucket.org/bchradiology/u-net/src
and re-trained the model with our own training images.

3 Four cases with successful SRRs failed at final template-space alignment step; two
failed at SRR due to heavy motion that could not be corrected for by any method.
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Fig. 2. Visual comparison of different methods for fetal brain segmentation.

Table 3. Slice similarities Sim(yi
k, A

i
kx

i) for the respective Ki
0.7-slices, i = 3.

NCC RMSE SSIM
Group B1 Group B2 Group B1 Group B2 Group B1 Group B2

SRR (M) 0.94±0.06 0.94±0.05 23.93±8.18 30.25±26.03 0.71±0.10 0.71±0.11
SRR (S) 0.94±0.05 0.94±0.06 24.05±8.54 30.80±26.28 0.71±0.10 0.70±0.12
SRR (L) 0.87±0.15 0.87±0.14 29.50±14.07 38.56±35.23 0.60±0.16 0.60±0.17

the manual segmentations which we refer to as SRR (L), SRR (S) and SRR
(M), respectively. Table 3 shows the slice similarities Sim(yik, A

i
kx

i) for the final
iteration i = 3 using NCC, root mean squared error (RMSE) and structural
similarity (SSIM). The proposed SRR (S) algorithm achieves reconstructions of
almost identical self-consistency as SRR (M). In absence of a ground-truth, an
additional subjective quality assessment in a clinical context was made where
two blinded pediatric radiologists assessed all reconstructions side-by-side. We
compared this to reconstructions obtained by the state-of-the-art toolkit devel-
oped by Kainz et al. [6] using the manual segmentations as input masks. Table 4
underlines that SRR (S) and SRR (M) achieve reconstructions of high quality
that are subjectively almost indistinguishable. The comparison against Kainz et
al. [6] confirms the effectiveness of our proposed outlier-robust SRR framework
which is also illustrated in Fig. 3.

4 Discussion and Conclusion

In this work, we present a fully automated pipeline for fetal brain MRI recon-
struction benefiting from deep-learning based automatic fetal brain localization
and segmentation. We propose CNN-based coarse segmentation for robust lo-
calization and training with a multi-scale loss function for a fine segmentation
of the fetal brain. Compared with Keraudren et al. [7], our localization method
does not need prior information such as gestational age and achieved superior
performance in less time. Unlike [10] which takes a whole image input to a CNN,
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Table 4. Summary of clinical evaluation. Anatomical clarity was assessed on the cere-
bellar structure, the aqueduct and the interhemispheric fissure. SRR quality rates intro-
duced artifactual structures and edge uncertainty. The respective average scoring range
is shown in square brackets (the higher, the better). Radiologists’ preference ranks sub-
jectively from least (0) to most preferred (3) reconstruction. A ∗ denotes a significant
difference compared to SRR (M) based on a Wilcoxon signed-rank test (p < 0.05).

Anat. Clarity [0 . . . 4] SRR Quality [0 . . . 2] Radiologists’ Pref.
Group B1 Group B2 Group B1 Group B2 Group B1 Group B2

SRR (M) 2.32±0.55 3.01±0.68 0.88±0.30 1.10±0.35 1.96±0.75 2.04±0.69
SRR (S) 2.36±0.52 3.01±0.75 0.81±0.51 1.10±0.42 1.54±0.85 1.58±0.81
SRR (L) 1.92±0.69∗ 2.69±0.84∗ 0.54±0.43∗ 0.85±0.43∗ 0.58±0.64∗ 0.77±0.67∗

Kainz et al. [6] 2.01±0.75∗ 2.92±0.77 0.83±0.33 1.15±0.36 1.92±1.02 1.62±0.79

SRR (S) SRR (L) Kainz et al.SRR (M)
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Fig. 3. Visual comparison for one single case showing the SRR (M)/(S) similarity and
the effectiveness of the proposed outlier-robust SRR algorithm to prevent artifactual
structures such as shown with arrows.

our segmentation method follows a coarse-to-fine way, and leads to higher seg-
mentation accuracy. Moreover, we propose an alternative robust-outlier rejection
method during the SRR step which, in contrast to [3, 6], leads to a simple, yet
effective, linear least-squares formulation with a single hyperparameter. Overall,
our experiments show automatic fetal brain MRI reconstructions that are com-
parable to manual segmentation-based reconstructions, effectively eliminating
the need of any manual intervention. In the future, we aim to apply this frame-
work to quantify the impact of spina bifida repair surgeries by measuring the
resolution of the Chiari type II malformation and the degree of ventriculomegaly.
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