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Abstract

Due to the high cost and low accessibility of 7T magnetic resonance imaging (MRI) scanners, we 

propose a novel dual-domain cascaded regression framework to synthesize 7T images from the 

routine 3T images. Our framework is composed of two parallel and interactive multi-stage 

regression streams, where one stream regresses on spatial domain and the other regresses on 

frequency domain. These two streams complement each other and enable the learning of complex 

mappings between 3T and 7T images. We evaluated the proposed framework on a set of 3T and 

7T images by leave-one-out cross-validation. Experimental results demonstrate that the proposed 

framework generates realistic 7T images and achieves better results than state-of-the-art methods.

1 Introduction

Since early 2000s, 3T MRI has become the standard for research and clinical applications. 

In 2017, the first 7T MRI scanner was approved for clinical use by the United States Food 

and Drug Administration (FDA)1. Compared with 3T MRI, 7T MRI typically affords greater 

anatomical details and faster image reconstruction, which may benefit the diagnosis of 

diseases [1]. However, 7T MRI scanners are significantly more expensive and hence less 

common at hospitals and clinical institutions. To date, there are less than 100 7T MRI 

scanners worldwide [2]. Accordingly, this motivates the research on 7T image synthesis 

using the low-field images (e.g., 3T images). In this work, we show how the prediction of 7T 

MRI from 3T images can be improved by concurrently considering the spatial and frequency 

domains in a regression framework.

The basic goal of 7T image synthesis is to map low-resolution (LR) 3T images to high-

resolution (HR) 7T images. But this is not a simple super-resolution problem because the 

appearance and contrast of 7T images can be different from those of 3T images. For this 

purpose, a number of machine learning methods have been proposed in recent years. 

Bhavsar et al. [3] introduced a group-sparse representation method for resolution 
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enhancement of CT lung images. Roy et al. [4] presented an example-based super-resolution 

framework to synthesize HR MR images from multi-contrast atlases. To enhance the quality 

and resolution of neonatal images, Zhang et al. [5] proposed a super-resolution method with 

the guidance of longitudinal data. Bahrami et al. [6] proposed a hierarchical sparse 

representation method with multi-level canonical correlation analysis (M-CCA) for the 

reconstruction of 7T-like MR images from 3T MR images. A deep learning approach has 

appeared for resolution enhancement in [7]. Bahrami et al. [8] developed a CNN-based 

approach that takes into account appearance and anatomical features (CAAF) to predict 7T 

images from 3T images.

In this paper, we propose a dual-domain cascaded regression (DDCR) framework to 

synthesize realistic 7T from 3T images with two parallel and interactive multi-stage 

regression streams based on spatial and frequency domains. Our framework employs 

complementary cues on both domains to learn complex mappings from 3T to 7T modalities. 

Comparisons with the existing methods indicate that synthesized 7T images with higher 

quality can be obtained with DDCR.

2 Method

DDCR (Fig. 1) formulates the mapping between the 7T and 3T images as a regression 

problem. Specifically, DDCR regresses the local patches of 7T images from local patches of 

3T images. DDCR uses intensity and spectral transformations to improve the quality of 7T 

image synthesis. DDCR consists of two steps: (1) image preprocessing and (2) multi-stage 

regression.

2.1 Image Preprocessing

An input 3T image Y and pairs of 3T and 7T exemplar images {J3T, J7T} are registered to 

MNI standard space [9] using FLIRT [10,11] to remove pose differences. Specifically, all 7T 

exemplar images are linearly registered to the MNI standard space with an individual 

template [9]. The 3T exemplar image is then rigidly aligned to its corresponding 7T image. 

After registration, bias correction [12] and skull stripping [13] are performed. The image 

intensity values are normalized using histogram matching and scaled to range of [0, 1]. 

Histogram matching is performed separately for 3T and 7T images. For 3T images, the 

histograms of all normalized 3T exemplar images are matched to the histogram of the 

normalized input 3T image. Following that, the normalized 7T exemplar image whose 

corresponding 3T exemplar image is nearest to the input 3T image in Euclidean distance is 

chosen as referenced 7T image for the histogram matching of all remaining 7T images.

2.2 Multi-stage Regression

To model the mapping from 3T (LR) to 7T (HR) modalities, a dual-domain multi-stage 

regression is developed. As shown in Fig. 1, the regression process is carried out on the two 

streams of spatial and frequency domains in multiple stages. In this study, the frequency 

domain is computed with the simple but efficient discrete cosine transform. For each stage 

of regression, the regression mapping from 3T to 7T modalities is performed separately. The 

regression results of spatial and frequency domains are then fused together as a new input 
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for the later regression stage. It is worth noting that input image of the first stage regression 

is the normalized 3T image, whereas the input images of the remaining stages along each 

stream are the intermediate synthesized 7T images.

For the first stage, given an input 3T image X ∈ ℛM × N × O and Q pairs of 3T and 7T 

exemplar images Z3T, Z7T ∈ ℛM × N × O × Q, we divide the input image into patches, denoted 

as x, with size p × p × p for patch regression. For each input patch, we collect L1 most 

similar patches {z3T,l∣l = 1, … , L1} from the 3T exemplar images with block-matching 

method [14]. The 7T patches {z7T,l∣l = 1, … , L1} with the same locations of 3T exemplar 

patches are also collected from the corresponding 7T exemplar images. These 3T and 7T 

patch pairs are employed for the construction of the LR and HR dictionaries: DLR = [z3T,1, 

… , z3T,L1] and DHR = [z7T;1, … , z7T,L1] in the spatial domain, respectively. We propose a 

linear regression model to represent the mapping from the LR dictionary to the HR 

dictionary:

DHR = BsDLR + ε, (1)

where Bs is the projection matrix, and ε is the error. We employ the ridge regression [15] to 

solve the inverse problem (1) in an optimization form:

Bs = min
Bs

DHR − BsDLR 2
2 + λ Bs 2

2, (2)

where λ is a regularization parameter. By taking the first derivative of (2) with respect to the 

variable Bs and setting it to zero, the projection matrix can be expressed in a closed-form 

solution:

Bs = DHRDLR′ DLRDLR′ + λI −1, (3)

where DLR′  denotes the transpose of the matrix DLR, and I is an identity matrix. According to 

the inverse matrix identity [16], the estimated projection matrix Bs in the spatial domain can 

be rewritten in another form with low computational complexity as follows:

Bs = DHR DLR′ DLR + λI −1DLR′ . (4)

By fixing Bs, the preliminary synthesized yse of the 7T MR patch y from the input 3T patch 

x becomes a simple matrix projection:

yse = Bsx . (5)
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On the other hand, we can also estimate a synthesized HR dictionary Dse from the LR 

dictionary DLR in the following form:

Dse = BsDLR, (6)

where Dse is denoted as synthesized HR dictionary and can be referenced for the 

construction of LR dictionary for the next regression stage.

For the first stage of regression in the frequency domain, let α, ULR and UHR stand for the 

respective DCT coefficients of x, DLR and DHR, respectively. Similar to the regression in the 

spatial domain, the synthesized 7T component and the synthesized HR dictionary in the 

frequency domain can be separately computed as

vte = UHR ULR′ ULR + λI −1ULR′ α, (7)

and

Ute = UHR ULR′ ULR + λI −1ULR′ ULR . (8)

These temporary results can be referenced as the input and the construction of LR dictionary 

for the next stage.

After regression on both spatial and frequency domain, we further fuse the regression results 

of yse, Dse, vte and Ute in the spatial and frequency domains as follows:

y = (yse ∘ yse + idct(vte) ∘ idct(vte)) ∕ 2, (9)

DHR = Dse ∘ Dse + idct(Ute) ∘ idct(Ute) ∕ 2, (10)

v = (dct (yse) ∘ dct (yse) + vte ∘ vte) ∕ 2, (11)

UHR = idct Dse ∘ idct Dse + Ute ∘ Ute ∕ 2, (12)

where dct (·) and idct (·) represent forward and inverse DCT functions, respectively, and the 

operator ○ is the Hadamard product of two matrices.

Zhang et al. Page 4

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2019 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



With the computed y, DHR, v and UHR, the cascaded stages of regression can be further 

carried out in the streams of respective domains. Specifically, for the cascaded regression in 

the spatial domain, the synthesized y and dictionary DHR at the stage k are taken as the input 

x and the LR dictionary DLR of the stage k+1, respectively. Similarly, in the frequency 

domain, the synthesized HR component v and HR dictionary UHR at the stage k are treated 

as the input LR component α and the LR dictionary ULR of the stage k + 1. On the other 

hand, the HR dictionaries DHR and UHR from the stage k in the spatial and frequency 

domains are treated as the HR dictionaries of the stage k + 1, respectively. With the setup of 

input, LR and HR dictionaries on both domains, we can perform the equations (5)–(8) to 

obtain regression results at the current stage. Then we can fuse the regression results with 

equations (9)–(12) again for the next stage. With K stages of regression, we further collect 

all synthesized 7T patches to construct the final result.

3 Experiments and Results

3.1 Dataset

With the local institutional review board (IRB), 15 adults were recruited for MR data 

acquisition in this study. The 3T and 7T brain images of all subjects were acquired with 

Siemens Magnetom Trio 3T and 7T MRI scanners, respectively. Specifically, for 3T images, 

T1 images of 224 coronal slices were obtained with the 3D magnetization-prepared rapid 

gradient-echo (MP-RAGE) sequence. The imaging parameters of 3D MP-RAGE sequence 

were as follows: repetition time (TR) = 1900 ms, echo time (TE) = 2.16 ms, inversion time 

(TI) = 900 ms, flip angle (FA) = 9°, and voxel size = 1 × 1 × 1 mm3. For 7T images, T1 

images of 191 sagittal slices were also obtained with the 3D MP2-RAGE sequence. The 

imaging parameters of 3D MP2-RAGE sequence were as follows: TR = 6000 ms, TE = 2.95 

ms, TI = 800/2700 ms, FA = 4°/4°, and voxel size = 0.65 × 0.65 × 0.65 mm3. As the gradient 

echo pulse sequences were used for image acquisition, there is only little distortion between 

the obtained 3T and 7T MR images, which ensures the imaging consistency across magnetic 

fields.

3.2 Experimental Setup

Extensive experiments were conducted to illustrate the effectiveness of the proposed 

method. In all experiments, we adopted leave-one-out cross-validation (LOOCV) for the 

evaluation. Specifically, in one fold of LOOCV, one 3T MR image was chosen for testing, 

whereas the remaining paired 3T and 7T MR images were treated as exemplars. The 7T 

image paired with the testing 3T image was treated as the ground truth image. For 

simplicity, we chose two stages for the implementation of the multi-stage strategy. The 

parameters of the proposed method were as follows: p = 3, λ = 0.001, Q = 14, K = 2, L1 = 

25 and L2 = 1 in all experiments, where L2 is the number of similar patches in the second 

stage regression. For the parameter settings, we manually tuned these parameters from the 

first stage to the last to ensure that the proposed method approximates its best performance.
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3.3 Results

Several relevant methods like histogram matching (HMAT), M-CCA [6] and CAAF [8] were 

used as baseline methods for comparison. Meanwhile, to further illustrate the benefit of 

dual-domain strategy for the cascaded regression, DDCR was also compared with single 

spatial-domain cascaded regression, denoted as SDCR. For quantitative image quality 

assessment, we adopted two evaluation metrics: PSNR and Structural SIMilarity (SSIM) 

index [17]. All synthesized images from baseline methods and our method were compared 

with the real 7T images for the computation of PSNR and SSIM. Figure 2 shows the box-

plots of PSNR and SSIM values of 15 synthesized 7T MR images. As can be observed, 

DDCR generally achieves higher PSNR and SSIM than the other baseline methods. Even 

though SDCR almost achieves the same PSNR values as DDCR, SDCR has distinctly lower 

SSIM values than DDCR. Figure 3 shows the axial, sagittal and coronal views of 

synthesized 7T MR images for one randomly selected subject. It can also be found from Fig. 

3 that the synthesized 7T image by DDCR has better image quality and less distortion.

4 Discussion

Referring to Figs. 2 and 3, the proposed cascaded regression method can synthesize 7T 

images with better quality. Meanwhile, as can be found in Fig. 2, although the performance 

of DDCR w.r.t. the PSNR index is similar to that of SDCR, DDCR achieves higher SSIM 

values than SDCR. It is suggested that the synthesized 7T images by DDCR are more 

similar to real 7T images and thus validate the effectiveness of the dual-domain strategy.

We convert the image synthesis problem into a regression problem and solve it in a closed 

form. Multi-stage regression is also employed to further improve the quality of image 

synthesis. By introducing two complementary domains, two regression streams on respective 

spatial and frequency domains benefit each other in learning complex mappings between 3T 

and 7T images. The proposed method is simple and effective with low computational cost, 

which outperforms sparse representation based methods (e.g., M-CCA [6]) and can even 

compete with deep learning based methods (e.g., CAAF [8]). The proposed method is free 

of training process and does not require large amounts of training data. With limited 7T 

exemplar data, we can still achieve satisfactory 7T image synthesis. Therefore, the 

dependence of the proposed method on large training data, particularly less available 7T 

data, is not very strong.

5 Conclusion

In this paper, we have proposed a novel image synthesis method based on dualdomain 

cascaded regression. With the reference of pairs of 3T and 7T MR exemplar images, the 

proposed method can synthesize high-quality 7T images from 3T images. The experimental 

results suggest that the proposed method generally achieves better results than the state-of-

the-art methods both qualitatively and quantitatively and thus corroborate the efficacy of the 

proposed method. For big training data, dual-domain convolutional neural network for 

image synthesis is left as our future research work.
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Fig. 1. 
Method overview. DCT and IDCT are the forward and inverse discrete cosine transforms, 

respectively.
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Fig. 2. 
Box-plots for PSNR and SSIM values. The middle line of each box is the median, the edges 

mark the 25th and 75th percentiles, and the whiskers extend to the minimum and the 

maximum. For all methods, the respective medians of PSNR and SSIM values are as 

follows: (a) HMAT (PSNR = 21.6 dB, SSIM = 0.30), (b) M-CCA (PSNR = 25.8 dB, SSIM = 

0.50), (c) CAAF (PSNR = 26.3 dB, SSIM = 0.83), (d) SDCR (PSNR = 27.7 dB, SSIM = 

0.85), and (e) DDCR (PSNR = 27.7 dB, SSIM = 0.86).
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Fig. 3. 
Visual comparison of axial, sagittal and coronal views of synthesized 7T images with close-

up views of specific regions for one subject.
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