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Abstract

We present novel spherical deformation for a landmark-free shape correspondence in a group-wise 

manner. In this work, we aim at both addressing template selection bias and minimizing 

registration distortion in a single framework. The proposed spherical deformation yields a non-

rigid deformation field without referring to any particular spherical coordinate system. 

Specifically, we extend a rigid rotation represented by well-known Euler angles to general non-

rigid local deformation via spatial-varying Euler angles. The proposed method employs spherical 

harmonics interpolation of the local displacements to simultaneously solve rigid and non-rigid 

local deformation during the optimization. This consequently leads to a continuous, smooth, and 

hierarchical representation of the deformation field that minimizes registration distortion. In 

addition, the proposed method is group-wise registration that requires no specific template to 

establish a shape correspondence. In the experiments, we show an improved shape correspondence 

with high accuracy in cortical surface parcellation as well as significantly low registration 

distortion in surface area and edge length compared to the existing registration methods while 

achieving fast registration in 3 mins per subject.
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1 Introduction

Understanding of morphology in medical imaging is a fundamental step for statistical 

analyses of cortical structures such as anatomy, pathology, and physiology. This typically 

requires well establishment of a shape correspondence, which might otherwise result in an 

unacceptable analysis. For example, studies of brain degeneration such as Alzheimer’s 

disease rely on a proper shape correspondence of cortical structures for a valid comparison 

of local cortical measurements. However, most cortical structures are highly variable in 

general; therefore, it is quite challenging to define a formal consensus in the existence of 

such variability.

Spherical deformation has been widely used for surface registration [3,7,4,6]. Several 

template-based methods have been proposed without referring to a specific spherical 
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coordinate system [3,7,6]. In [7], spherical displacements are represented as local geodesics 

in the local tangent space but only capture local deformation after applying an initial rigid 

rotation. [6] discretized the local spherical deformation using fixed sampling points. The 

degree of freedom of deformation is limited to the number of the points. Alternatively [4] 

proposed a template-free method via spherical harmonics interpolation of local angular 

displacements. However, the quality of their deformation depends on a spherical coordinate 

system due to linear interpolation of non-linear polar angles. This yields an inconsistent 

deformation field having instability around the poles.

A desirable property to surface registration is to reduce registration distortion while 

maximizing similarity metrics. Even with high registration accuracy, registration distortion 

could still exist due to template bias or missing anatomy, which potentially affects secondary 

statistical shape analyses. For instance, [6] showed that a shape correspondence with 

reduced registration distortion improves statistical sensitivity in secondary analyses. Such 

registration distortion can be reduced with deformation regularization [3,7,6] or without 

employing a template in an unbiased fashion [4]. In addition to the smoothness of 

deformation fields, an optimal rigid alignment can minimally allow non-rigid local 

deformation. However, most surface registration methods typically use either a specific 

template or an initial rigid alignment once before non-rigid deformation.

In this paper, we propose novel spherical deformation that minimizes registration distortion. 

The proposed method harmonizes rigid and non-rigid deformation in a single framework. 

Specifically, it achieves global rigid alignment during the optimization while simultaneously 

allowing spatial-varying local deformation as a function of each spherical location. 

Moreover, the proposed method is group-wise registration without referring to a specific 

template. Our method is inspired by spherical harmonics interpolation of deformation fields 

[4]. In contrast to their spherical deformation relying heavily on initial optimal pole 

selection, however, the proposed method does not refer to any particular spherical coordinate 

system. This thus yields a well-established shape correspondence with lower registration 

distortion in 3 mins per subject than the existing methods [3,7].

2 Methods

2.1 Problem Definition

We consider a set of N cortical surfaces with their initial spherical mappings. For the ith 

subject, the goal is to estimate a continuous spherical deformation field Mi:𝕊2 𝕊2 such 

that

M1 x1 = M2 x2 = ⋯ = MN xN , (1)

where xi ∈ 𝕊2 is the corresponding location of the ith subject. In principle, M provides 

displacements carrying any spherical locations to their corresponding ones. A desirable 

deformation field is smooth and continuous. Here, a key component is thus to represent 

spherical displacements of the corresponding locations appropriately that meet such a 
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demand. In the following sections, we first describe the proposed displacement encoding 

scheme represented by a rigid rotation and then extend the idea to non-rigid deformation.

2.2 Displacement Encoding

We consider a displacement on the unit sphere. We seek a consistent displacement encoding 

scheme free from a non-linear spherical polar coordinate system. Here, an Euler rotation can 

efficiently encode such a displacement by the composition of two independent rotations: 

rotation of an Euler axis followed by rotation about the Euler axis. Figure 1 shows a 

schematic illustration of the proposed encoding.

Euler axis.—Any reference Euler axis can sufficiently implement a target rigid rotation. 

Euler’s rotation theorem implies that intermediate rotations (of and about an Euler axis) vary 

depending on a reference Euler axis but their composite rotation is equivalent to any target 

rotation independent of a reference Euler axis. Therefore we choose an arbitrary Euler axis 

(e.g., north pole) denoted by z ∈ 𝕊2.

Rotation of Euler axis.—We consider z is rotated to be at z ∈ 𝕊2. The location of z is 

given as a function of two polar angles (α, β) ∈ [0, π] × [−π, π].

z(α, β) = sin αz + α cos βz + β , sin αz + α sin βz + β , cos αz + α T, (2)

where αz and βz are inclination and azimuth of z, respectively. To rotate z to z, we define an 

additional rotation axis z⊥ and its rotation angle τ as follows:

z⊥(α, β) = z × z(α, β)
z × z(α, β) 2

 and τ = arccos zT ⋅ z(α, β) . (3)

Unfortunately, α and β are non-linear and vary with respect to a spherical coordinate system. 

To overcome this issue, we instead compute α and β as functions of unit-speed geodesics on 

the local tangent plane at z via the exponential map φz:Tz𝕊2 𝕊2. In this way, we can thus 

find a unique location zT ∈ TzS2 that corresponds to z. For two arbitrary orthonormal bases 

u1, u2 ∈ Tz𝕊2, α and β are determined by a linear combination of the two bases as follows:

[α, β]T = φz zT = φz cu1
u1 + cu2

u2 , (4)

where cu1
 and cu2

 are coefficients associated with u1 and u2, respectively. Note that u1 and 

u2 define a reference frame on the tangent space, which has no influence on geodesics 

themselves on Tz𝕊2.

Rotation about Euler axis.—Given a rotation angle γ ∈ [−π, π] about z, we compute 

the rigid rotation using the following Rodrigues rotation formula:

Lyu et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2019 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



R(α, β, γ) = I + (sin γ)[z]× + (1 − cos γ)[z]×
2

⋅ I + (sin τ) z⊥
× + (1 − cos τ) z⊥

×
2 ,

(5)

where [z]× and [z⊥]× are the 3 × 3 skew symmetric matrices of z and z⊥, which represent 

cross products, respectively. For ∀x ∈ 𝕊2, this encodes a new location:

M(x) = x(α, β, γ) = R(α, β, γ) ⋅ x . (6)

The resulting deformation M yields an identical rigid rotation at every location and globally 

drives the corresponding locations to the closest location by finding an optimal set of α, β, 

and γ, which needs an extension to non-rigid deformation.

2.3 Extension to Hierarchical Spherical Deformation

In general, all the corresponding locations are not completely aligned after the rigid rotation. 

This leads to an extension of the rigid rotation to non-rigid deformation. Here, we propose 

smoothly spatially-varying rotation angles (α, β, γ) as functions of spherical locations rather 

than constants. For this purpose, we use a spherical harmonics interpolation technique that 

allows smooth interpolation of signals defined on the unit sphere. At a spherical location (θ, 

ϕ), the spherical harmonics basis function of degree l and order m (−l ≤ m ≤ l) is given by

Y l
m(θ, ϕ) = 2l + 1

4π
(l − m)!
(l + m)!Pl

m(cos θ)eimϕ, (7)

Y l
−m(θ, ϕ) = ( − 1)mY l

m *(θ, ϕ), (8)

where Y l
m * denotes the complex conjugate of Y l

m, and Pl
m is the associated Legendre 

polynomial

Pl
m(x) = ( − 1)m

2ll!
1 − x2

m
2 d(l + m)

dx(l + m) x2 − 1 l . (9)

In particular, α and β are obtained by plugging a set of spherical harmonics coefficients 

cu1
= cl, u1

m  and cu2
= cl, u2

m  into Eq. (4):

[α(θ, ϕ), β(θ, ϕ)]T = φz ∑
l = 0

∞
∑

m = − l

l
cl, u1

m u1 + cl, u2
m u2 ⋅ Y l

m(θ, ϕ) . (10)

This locally defines z. Similarly, γ is obtained by the spherical harmonics interpolation as a 

function of spherical harmonics coefficients cγ = cl, γ
m .
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γ(θ, ϕ) = ∑
l = 0

∞
∑

m = − l

l
cl, γ

m ⋅ Y l
m(θ, ϕ) . (11)

This locally defines a rotation about z at each spherical location (θ, ϕ), which implies that 

the rotation smoothly changes across spherical locations. The proposed deformation is 

hierarchically represented since the spherical harmonics basis functions are linearly 

independent; the lower spherical harmonics degree, the smoother, more global deformation. 

Thus, the smoothness is easily controllable. Note that the deformation is equivalent to a rigid 

(global) rotation if l = 0.

2.4 Optimization

We use scalar maps (e.g., mean curvature) defined on the cortical surfaces for the 

registration metric. We evaluate the agreement of the deformed scalar maps on the unit 

sphere to find the optimal Euler angles. Since an explicit correspondence of scalar maps is 

unavailable, we instead put S icosahedral sampling points on each subject’s sphere and 

evaluate the agreement of the deformed scalar maps at the corresponding sampling locations. 

Given estimates of cu1
i , cu2

i , cγ
i  of the ith subject, we consider its scalar map mi and the 

corresponding location x j
i  to the jth sampling location xj such that x j = R cu1

i , cu2
i , cγ

i ⋅ x j
i  (see 

Eq. (6)). By letting m j be the mean across scalar maps at xj, the energy function is given by

E cu1
, cu2

, cγ = 1
2SN ∑

j = 1

S
∑
i = 1

N 1
σx j

2 ⋅ mi x j
i ; cu1

i , cu2
i , cγ

i − m j
2
, (12)

where σx j
2  is feature variance at xj. By assuming that m and σx

2 are constant, we have the 

following gradients by some algebra:

− ∂E
∂cl, u

m = 1
SN ∑

j = 1

S
∑
i = 1

N 1
σx j

2 ⋅ Y l
m θ

x j
i , ϕ

x j
i ⋅ [z × u]× ⋅ x j

T ⋅ ∇x j
mi

⋅ m j − mi x j
i ,

(13)

− ∂E
∂cl, γ

m = 1
SN ∑

j = 1

S
∑
i = 1

N 1
σx j

2 ⋅ Y l
m θ

x j
i , ϕ

x j
i ⋅ [z]× ⋅ x j

T ⋅ ∇x j
mi ⋅ m j − mi x j

i , (14)

where ∇xm is a spatial gradient that can be efficiently computed as proposed in [7]. The 

optimal coefficients are then obtained by a standard gradient descent technique. Due to the 

nonlinearity of the energy function, the optimization is first preformed incrementally on 

each individual degree from l = 0 for an initial guess [4]. We also estimate m and σx
2 from 
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initial scalar maps and then update them during the initial guess to employ improved 

population statistics. Finally, the spherical harmonics coefficients are tuned simultaneously, 

which drives all the deformation fields with rigid and non-rigid deformation at the same 

time.

3 Results

We randomly chose 14 subjects out of the OASIS dataset [5]. Each hemisphere was 

manually labeled by an expert via the brainCOLOR protocol (49 ROIs)1. The evaluation was 

based on the surface parcellation and registration distortion. The cortical surfaces were 

reconstructed via a standard FreeSurfer pipeline [2], and the left hemispheres were used. We 

compared the proposed method with two existing methods with their default parameter 

settings: FreeSurfer (fixed template) [3] and Spherical Demons (fixed population average) 

[7]. In our method, we empirically set l = 10. All experiments were conducted with a single 

thread (Intel Xeon E5–2630 2.20GHz). For each subject, the proposed method and Spherical 

Demons took less than 3 mins, whereas FreeSurfer took more than an hour.

3.1 Registration Metrics

First, we computed the registration results using convexity (sulc) and rough/fine curvature 

(curv) features of the FreeSurfer’s outputs that are optimized for FreeSurfer and Spherical 

Demons. In these methods, the registration was achieved in a multi-scale manner by aligning 

sulc and rough curv maps followed by fine curv maps. Similarly, we varied the number of 

the sampling points at four different levels of icosahedral subdivision from 4 (S = 2, 562) to 

7 (S = 163, 842). Unlike [7], we performed only a single round of co-registration, which 

yields much faster registration. Second, we evaluated the three methods for their flexibility 

of deformation with only a fine curv feature having many local homogeneous regions. Here, 

we used S = 163, 842. Figure 2 shows the average fine curv features. Overall, similar 

patterns were observed in the three methods with all features since rough features provided 

well initial alignments in the low scales. On the other hand, the use of a fine curv feature 

yielded a less alignment in FreeSurfer and Spherical Demons, whereas the proposed method 

offered a comparable alignment to that with all features. Our method also produced less 

biased average population patterns than FreeSurfer that refers to a specific template.

3.2 Cortical Surface Parcellation

Since no ground-truth parcellation was available, we computed the mode parcellation map 

across the subjects. Then, we computed a Dice coefficient for each region with the mode 

map. We performed one-sided t-tests to reveal regions with statistically significant 

improvement on Dice coefficients. In addition, we corrected p-values via multi-comparisons 

using a standard false discovery rate [1] at q = 0.05. Table 1 and Table 2 summarize the Dice 

coefficients and the revealed regions, respectively. One improved region was found with all 

features compared to FreeSurfer, while showing comparable results to Spherical Demons. 

The proposed method achieved a high Dice coefficient even with only a fine curv feature; a 

large number of regions were revealed with significant improvement because the ambiguity 

1Neuromorphometrics, Inc. http://www.neuromorphometrics.com/
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in the local homogeneity of the highly localized feature maps was reduced by harmonizing 

rigid and non-rigid deformation.

3.3 Registration Distortion

Again, measuring registration distortion is important to evaluate bias introduced by 

deformation fields, which could affect secondary statistical shape analyses. We measured 

area and length distortion for each triangle and edge as the absolute log ratio between before 

and after registration [6]. Table 3 summarizes registration distortion in the three methods. 

Our method provided significantly reduced registration distortion compared to FreeSurfer 

and Spherical Demons regardless of registration metrics. We emphasize that such reduced 

distortion is achieved while keeping comparable registration accuracy to the existing 

methods.

4 Conclusion

We presented novel spherical deformation for a shape correspondence. The proposed 

method extends the rigid rotation represented by Euler angles to general non-rigid 

deformation. Both rigid rotation and non-rigid deformation are updated simultaneously in a 

single framework. Moreover, the proposed method is group-wise registration that does not 

require a specific template. Consequently, the resulting deformation field is smooth, 

continuous, and independent of a particular spherical coordinate system. In the experiments, 

the proposed method showed high accuracy in cortical surface parcellation as well as low 

registration distortion compared to the existing methods.
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Fig.1. 
A schematic illustration of the proposed rotation by Euler angles α, β, and γ. For the 

rotation of a given location, the rotation axis z (red) is rotated to z (blue) by α and β (i.e., τ 
about z⊥), followed by a rotation about z by γ (green). Since α and β are inconsistent 

subject to the poles of a spherical coordinate system, the exponential map φ (violet) at z is 

employed to encode local geodesics (orange). Overall, the rotation axis z and its associated 

rotation angle γ smoothly vary on the unit sphere as functions of spherical locations. A half 

sphere is used for better visualization.
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Fig.2. 
The average fine curv feature maps. The three methods achieve similar curv patterns with 

sulc+curv. On the other hand, FreeSurfer and Spherical Demons show less aligned curv 
maps with only a fine curv feature due to the local homogeneity, whereas the proposed 

method provides a comparable result to that with sulc+curv.
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Table 1.

Overall Dice coefficient in cortical surface parcellation. Compared to FreeSurfer and Spherical Demons, the 

proposed method achieves comparable Dice coefficients with sulc+curv and better overlaps with curv (*p ≪ 
001). See Table 2 for more details about individual regions with significantly improved Dice coefficients.

metric FreeSurfer Spherical Demons ours

sulc+curv 0.782 ± 0.132 0.784 ± 0.133 0.785 ± 0.129

curv only 0.692 ± 0.164 0.728 ± 0.155 0.774 ± 0.130*
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Table 2.

The number of regions with statistical significance (# of increases/# of decreases). One-sided t-tests reveal 

regions with statistical significance after multi-comparison correction (q = 0.05). No region is found with a 

decreased Dice coefficient.

metric FreeSurfer Spherical Demons

sulc+curv 1/0 0/0

curv only 40/0 23/0
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Table 3.

Registration distortion: absolute log ratio (mean ± std (max)) in surface area and edge length. For both sulc
+curv and curv features, the proposed method yields significantly less registration distortion than FreeSurfer 

and Spherical Demons by showing statistical significance (*p ≪ 001).

metric FreeSurfer Spherical Demons ours

area
sulc+curv 0.268 ± 0.217 (8.045) 0.194 ± 0.166 (2.986) 0.164 ± 0.130 (1.050)*

curv only 0.243 ± 0.214 (10.722) 0.113 ± 0.101 (3.007) 0.090 ± 0.075 (0.662)*

len
sulc+curv 0.178 ± 0.150 (4.330) 0.129 ± 0.108 (1.980) 0.102 ± 0.083 (0.747)*

curv only 0.156 ± 0.138 (5.398) 0.072 ± 0.066 (1.316) 0.055 ± 0.046 (0.438)*

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2019 December 04.


	Abstract
	Introduction
	Methods
	Problem Definition
	Displacement Encoding
	Euler axis.
	Rotation of Euler axis.
	Rotation about Euler axis.

	Extension to Hierarchical Spherical Deformation
	Optimization

	Results
	Registration Metrics
	Cortical Surface Parcellation
	Registration Distortion

	Conclusion
	References
	Fig.1.
	Fig.2.
	Table 1.
	Table 2.
	Table 3.

