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Abstract

This paper presents a novel approach to modeling the pos terior distribution in image registration 

that is computationally efficient for large deformation diffeomorphic metric mapping (LDDMM). 

We develop a Laplace approximation of Bayesian registration models entirely in a bandlimited 

space that fully describes the properties of diffeomorphic transformations. In contrast to current 

methods, we compute the inverse Hessian at the mode of the posterior distribution of 

diffeomorphisms directly in the low dimensional frequency domain. This dramatically reduces the 

computational complexity of approximating posterior marginals in the high dimensional imaging 

space. Experimental results show that our method is significantly faster than the state-of-the-art 

diffeomorphic image registration uncertainty quantification algorithms, while producing 

comparable results. The efficiency of our method strengthens the feasibility in prospective clinical 

applications, e.g., real- time image-guided navigation for brain surgery.

1 Introduction

Diffeomorphic image registration has been widely studied in the fields of computational 

anatomy [3,8], atlas-based image segmentation [2], and anatomical shape analysis [9,16], as 

it provides smooth and invertible smooth spatial correspondences between images. The 

problem of ‘inexact’ registration is an ill-posed problem since the image data are usually 

contaminated by unknown noise. Pro-viding efficient measures to quantify the registration 

uncertainty or error is critical to fair assessment on estimated transformations and 

subsequent improvement on the accuracy of predictive models. This also forms the basis for 

model-assisted decision making, for example, image-guided neurosurgery system, where 

surgeons need a better understanding of registration uncertainty to identify residual tumors 

[10].

Motivated by probabilistic modeling, several works have proposed to quantify registration 

uncertainty by having a probability distribution over the space of transformation parameters 

[4,11,13,14]. These approaches formulate Bayesian image registration as an image matching 

likelihood term regularized by a prior that encourages smooth deformations. The spread of 

jiw917@lehigh.edu. 

HHS Public Access
Author manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2019 
September 01.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2018 September ; 11070: 880–888. doi:
10.1007/978-3-030-00928-1_99.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the posterior of unknown registration parameters is then considered as a measure of the 

registration uncertainty. Existing methods including stochastic [13] and sampling [4,5,10] 

methods have been investigated to estimate the uncertainty, due to the fact that the posterior 

does not have a closed form and is computationally problematic to solve. A large 

computational effort is required to sample over high dimensional parameter spaces. To 

alleviate the excessive computational demands of sampling methods, a multivariate Gaussian 

approximation to the mode over the posterior was presented in [14]. In spite of the 

advantages of constructing Bayesian models, the extremely high computational cost and 

large memory footprint of the algorithms mentioned above have limited their usage in 

important applications that require computational efficiency.

In this paper, we are the first to introduce an efficient Bayesian image registration 

uncertainty quantification model that employs a low dimensional Fourier representation of 

the tangent space of diffeomorphisms [17]. We develop a novel Laplace approximation of 

the log posterior distribution that characterizes the deformation uncertainty at the optimal 

solution in a bandlimited space. More specifically, we assume a complex Gaussian 

distribution at the mode of the posterior, and approximate its covariance matrix to quantify 

the registration uncertainty. Our method dramatically reduces the computational complexity 

of approximating posterior marginals, which makes the uncertainty analysis for 

diffeomorphic image registration tractable in time. Another major benefit of our algorithm is 

that the covariance matrix can be easily computed and stored through the inverse Hessian of 

the log posterior defined by the low dimensional representations of transformation fields. We 

demonstrate the effectiveness of our model in both synthetic and real brain MRI data. A 

promising clinical application of our method is to provide key information on brain shifts; 

hence helping neurosurgeons to identify residual tumor tissue in real time, while lowering 

the risk of collateral tissue damage.

2 Background: LDDMM with Geodesic Shooting

Consider a source image S and a target image T as square-integrable functions defined on a 

torus domain Ω = ℝd /ℤd (S(x), T(x) : Ω ℝ). The problem of diffeomorphic image 

registration is to find the shortest path of diffeomorphic transformations ψt ∈ Diff(Ω) : Ω → 
Ω, t ∈ [0,1], such that the deformed image Soψ1 at time point t = 1 is similar to T. An 

explicit energy function of LDDMM with geodesic shooting [12,15] is formulated as an 

image matching term plus a regularization term that guarantees the smoothness of the 

transformation fields

E v0 = λ
2 Dist S ∘ ψ1, T + 1

2 ℒv0, v0 , s . t . geodesic constraint, (1)

where λ is a positive weight parameter and Dist(·, ·) is a distance function that measures the 

similarity between images. The deformation ψ is defined as an integral flow of the time-

varying Eulerian velocity field vt that lies in the tangent space of diffeomorphisms V = 

TDiff(Ω). Here ℒ : V V* is a symmetric, positive-definite differential operator that maps 
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a tangent vector υ ∈ V into the dual space m ∈ V*, with its inverse 𝒦 : V* V. The (·, ·) 

denotes a paring of a momentum vector m ∈ V* with a tangent vector υ ∈ V.

The geodesic at the minimum of (1) is uniquely determined by integrating the geodesic 

constraint, a.k.a. Euler-Poincaré differential equation (EPDiff) [1, 7], which is 

computationally expensive in high dimensional image spaces. A recent work demonstrated 

that the entire optimization of LDDMM with geodesic shooting can be efficiently carried in 

a low dimensional bandlimited space with dramatic speed improvement [17,18]. We briefly 

review the basic concepts below.

Let Diff (Ω) and V denote the space of Fourier representations of diffeomorphisms and 

velocity fields respectively. Given time-dependent velocity field vt ∈ V, the diffeomorphism 

ψ t ∈ Diff (Ω) in the finite-dimensional Fourier domain can be computed as

ψ t = e + ut,
dut
dt = − vt − 𝒟ut * vt, (2)

where e is the frequency of an identity element, 𝒟ut is a tensor product 𝒟 ⊗ ut, representing 

the Fourier frequencies of a Jacobian matrix D with central difference approximation, and ∗ 
is a circular convolution with zero padding to avoid aliasing1.

The Fourier representation of the geodesic constraint (EPDiff) is defined as

∂vt
∂t = advt

† vt = − 𝒦 𝒟vt
T ⋆ mt + ∇ ⋅ mt ⊗ vt , (3)

where ⋆ is the truncated matrix-vector field auto-correlation and ad† is an adjoint operator to 

the negative Lie bracket of vector fields,  advw = − [v, w] = 𝒟v ∗ w − 𝒟w ∗ v. The 

operator ∇· is the discrete divergence of a vector field. Here 𝒦 is a smoothing operator with 

its inverse ℒ, which is the Fourier transform of a commonly used Laplacian operator (−αΔ + 

I)c, with a positive weight parameter α and a smoothness parameter c. The Fourier 

coefficients of ℒ is, i.e., ℒ ξ1, …, ξd = −2α∑ j = 1
d cos 2πξ j − 1 + 1 c

, where (ξ1,…,ξd) 

is a d-dimensional frequency vector.

3 Low-Dimensional Bayesian Registration Uncertainty

We introduce a Bayesian model of diffeomorphic image registration represented in the 

bandlimited velocity space V, with registration uncertainty explicitly encoded as latent 

variables of the model.

Assuming i.i.d. Gaussian noise on image intensities, we obtain the likelihood

1To prevent the domain from growing infinity, we truncate the output of the convolution in each dimension to a suitable finite set.
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p T S, σ2 = 1
2πσ2 M exp − 1

2σ2‖S ∘ ψ1 − T‖2
2 , (4)

where σ2 is the noise variance and M is the number of image voxels. The deformation ψ1 

corresponds to ψ1 in Fourier space via the Fourier transform ℱ ψ1 = ψ1, or its inverse 

ψ1 = ℱ−1 ψ1 .

We define a prior on the initial velocity field v0 to be a complex multivariate Gaussian 

distribution that ensures the smoothness of the geodesic path, i.e.,

p v0 = 1

(2π)
Md
2 ℒ − 1

1
2

exp − 1
2 ℒv0, v0 , (5)

where ǀ·ǀ is matrix determinant.

Combining the likelihood (4) and prior (5) together, we obtain the negative log posterior 

distribution on the deformation parameter parameterized by v0 as

−ln p v0 S, T , σ2 = 1
2 ℒv0, v0 +

S ∘ ψ1 − T 2
2

2σ2 + M ln σ + const . (6)

In most probabilistic formulations of image-based registration, the likelihood function (4), as 

a function of the transformation parameters, is highly non-Gaussian because of the complex 

spatial structure of the images. This brings difficulties in the inference of such a non-

Gaussian posterior.

3.1 Laplace Approximation

In this section, we introduce Laplace’s method to approximate the covariance matrix at the 

mode of the posterior in a low dimensional bandlimited space. We first minimize the 

negative log posterior in (6) to the optimum, denoted as v0
opt (details are introduced in the 

following Sect. 4). We then assume a local complex Gaussian distribution at the optimal 

solution.

To simplify the notation, we use f v0 ≜ − ln p v0 |S, T , σ2 . The function f v0  is 

approximated to quadratic order by using second order Taylor series expansion at the 

optimal solution v0 as
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f v0 ≈ f v0
opt + ∇ f T v0

opt v0 − v0
opt + 1

2 v0 − v0
opt T ℋ f v0

opt v0 − v0
opt ,

where ∇ denotes the first derivative and ℋ is a second order Hessian. Since the first 

derivative of f vanishes at the optimal solution v0
opt, we have

f v0 ≈ f v0
opt + 1

2 v0 − v0
opt T ℋ f v0

opt v0 − v0
opt . (7)

The posterior is approximately a Gaussian 𝒩 v0
opt, ℋ−1 f v0

opt . The inverse Hessian 

corresponds to the covariance matrix of the registration parameters.

4 Inference

Following optimal control theory [12], we first develop a gradient decent algorithm to 

minimize the negative log posterior distribution (6) w.r.t. the initial velocity v0 and the image 

noise variance σ2. Analogous to [14], we then derive the second variation of (6) to compute 

the Hessian-vector product via a linearized forward-backward sweep.

Parameter Estimation.

We add Lagrange multipliers to constrain the diffeomorphism ψ t to be a geodesic path in the 

frequency domain. This is done by introducing time-dependent adjoint variables, v t and ut, 

and writing the augmented energy2,

E v0 = − lnp v0 S, T , σ2 + ∫
0

1
v t, v̇t + advt

† vt + ut, u̇t + vt + 𝒟ut ∗ vt dt, (8)

where the last two terms correspond to Lagrange multipliers enforcing the geodesic 

constraint (3) and deformation transport Eq. (2) that is proved mathematically equivalent to 

the evolution equation [12].

The optimality conditions for the adjoints v t, ut are given by the following time-dependent 

system of ordinary differential equations, termed the adjoint equations (equivalent to error-

back propagation):

−v̇ t + advt
v t −   advt

† vt + ut + 𝒟ut
T ⋆ ut = 0, − u̇t − div  ut ⊗ vt = 0, (9)

2For notation simplification, we define the time derivative v̇t ≜ dvt /dt.
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subject to initial conditions v1 = 0 and u1 = − 1
σ2ℱ[ ∇S(1), S(1) − T ], where S(1) = S ∘ 

ψ1.

After integrating the geodesic equations (state equations) (3) forward in time to t = 1 and 

then backward integrating the adjoint Eqs. (9) in time to t = 0, the gradient of E w.r.t. v0 is 

∇v0
E = v0 − v0.

Setting the gradient w.r.t. σ2 to zero, we have a closed form update σ2 = 1
M ‖ S(1) − T‖2

2.

Covariance Estimation.

To estimate the full covariance matrix as an inverse Hessian, we develop a similar forward-

backward approach to compute the Hessian-vector products that involves the second 

variation of the augmented energy function (8). In particular, after deriving the second 

variation in the direction δv0 as ∂2

∂ϵ2 E v0 + ϵ ⋅ δv0 |ϵ = 0 = δv0, ℋE δv0 , we read off the 

Hessian-vector product ℋEδv0. Given an initial condition δv0, we can compute the Hessian-

vector product as ℋE δv0 = δv0 − δv0, where δv0 is the adjoint variable of δv0.

The second variation can be accomplished by forward-sweeping the linearized geodesic 

constraint around the optimal solution, followed by a backward sweep of the linearized 

adjoint system. Introducing time-dependent adjoint variables δv t and δu0, the forward 

linearized geodesic equations are

δv̇t = −  adδvt
† vt − advt

† δvt, δu̇t = − 𝒟δut
∗ vt − 𝒟ut

∗ δvt − δvt .

The linearized adjoint system for the backward integration is

δv̇t = symvt
† δvt −  symδvt

† vt + δut + 𝒟ut
T ⋆ δut + 𝒟δut

T ⋆ ut,

δu̇t = −  div  δut ⊗ vt + ut ⊗ δvt ,

subject to initial conditions δu1 = − 2
σ2ℱ ∇S(1) ⋅ ∇S(1) + (S(1) − T) ⋅ ∇2S(1)  and 

δv1 = 0, with symvt
† δv t =  adδvt

v t − advt
† δvt.

5 Results

To evaluate our model, we first estimate the covariance matrix by using α = 3, c = 6 for the 

operator L. We set each dimension of the initial velocity field v0 as 16, which is similar to 

the settings used in the pairwise diffeomorphic image registration [17]. The number of time 

steps for Euler integration in geodesic shooting is set to 10. We then compare our results 
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with an uncertainty quantification method computed in a full dimensional image space [14] 

on the same dataset. For a fair comparison, we keep all the parameters including 

regularization and time steps for numerical integration fixed across both algorithms.

Data.

We test the proposed approach both on 2D synthetic data and 3D brain MRI scans from the 

OASIS dataset [6]. We generate a collection of binary image with resolution 1002. The 

MRIs are of dimension 1283, 1.25 mm3 isotropic voxels, and underwent skull-stripping, 

downsampling, intensity normalization, bias field correction, and co-registration with affine 

transformations.

Experimental Results.

Figure 1 visualizes the uncertainty information estimated from both our method and the 

baseline algorithm performed in high dimensional space on 2D data. We extract the local 

covariance matrix of each voxel and visualize it as an ellipse on the source image, with the 

color representing the matrix determinant. The smaller determinants are closer to the non-

isotropic area (e.g., circle boundaries), which indicate more confident registration results.

Figure 2 visualizes an example of 3D brain registration uncertainty. Note that due to the 

difficulty of computing a full covariance matrix by inverse Hessian In a high dimensional 

image space, we need to use an approximated low-rank Hessian with a number of dominant 

eigenmodes [14]. We choose the first 3000 eigenmodes with non-zero values to represent the 

most effective uncertainty results estimated from the baseline method (see the left panel of 

Fig. 3). Both methods show that the high uncertainty (with less confidence) appears in 

isotropic areas (e.g., inside the ventricle), while the low uncertainty (with high confidence) 

appears around non-isotropic areas (e.g. ventricle boundaries). The subtle differences hardly 

affect the uncertainty visualization between these two methods. Figure 3 reports the 

comparison of time and memory consumption. Our algorithm offers significant 

improvements in computational efficiency.

6 Conclusion

We presented a low dimensional Bayesian model for registration uncertainty quantification 

in the space of diffeomorphic transformations. Our method dramatically reduces the 

computational cost of the registration posterior approximation effectively in a bandlimited 

velocity space. This work is the first step toward efficient probabilistic models of registration 

uncertainty quantification based on high dimensional diffeomorphisms. The next future 

work will be investigating sampling based methods to assess our developed model 

uncertainty. While in this paper we focus on the context of LDDMM, our method can be 

generalized to other transformation parameterizations such as stationary velocity fields.

Acknowledgments.

This work is sponsored by NIH grants P41EB015898 and P41EB015902.

Wang et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Arnol’d VI: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses 
applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

2. Ashburner J, Friston KJ: Unified segmentation. Neuroimage 26(3), 839–851 (2005) [PubMed: 
15955494] 

3. Joshi S, Davis B, Jomier M, Gerig G: Unbiased diffeomorphic atlas construction for computational 
anatomy. NeuroImage 23, S151–S160 (2004) [PubMed: 15501084] 

4. Kybic J: Bootstrap resampling for image registration uncertainty estimation without ground truth. 
IEEE Trans. Image Process. 19(1), 64–73 (2010) [PubMed: 19709978] 

5. Le Folgoc L, Delingette H, Criminisi A, Ayache N: Quantifying registration uncertainty with sparse 
bayesian modelling. IEEE Trans. Med. Imaging 36(2), 607–617 (2017) [PubMed: 27831863] 

6. Marcus DS, et al.: Cross-sectional MRI data in young, middle aged, nondemented and demented 
older adults. Cogn. Neurosci 19, 1489–1507 (2007)

7. Miller MI, Trouvé A, Younes L: Geodesic shooting for computational anatomy. J. Math. Imaging 
Vis 24(2), 209–228 (2006) [PubMed: 20613972] 

8. Miller MI: Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. 
NeuroImage 23, S19–S33 (2004) [PubMed: 15501089] 

9. Qiu A, Younes L, Miller MI: Principal component based diffeomorphic surface mapping. IEEE 
Trans. Med. Imaging 31(2), 302–311 (2012) [PubMed: 21937344] 

10. Risholm P, Pieper S, Samset E, Wells WM: Summarizing and visualizing uncertainty in non-rigid 
registration In: Jiang T, Navab N, Pluim JPW, Viergever MA (eds.) MICCAI 2010. LNCS, vol. 
6362, pp. 554–561. Springer, Heidelberg (2010). 10.1007/978-3-642-15745-5_68

11. Risholm P, Samset E, Wells W: Bayesian estimation of deformation and elastic parameters in non-
rigid registration In: Fischer B, Dawant BM, Lorenz C (eds.) WBIR 2010. LNCS, vol. 6204, pp. 
104–115. Springer, Heidelberg (2010). 10.1007/978-3-642-14366-3_10

12. Vialard FX, Risser L, Rueckert D, Cotter CJ: Diffeomorphic 3d image registration via geodesic 
shooting using an efficient adjoint calculation. Int. J. Comput. Vis 97(2), 229–241 (2012)

13. Wassermann D, Toews M, Niethammer M, Wells W: Probabilistic diffeomorphic registration: 
representing uncertainty In: Ourselin S, Modat M (eds.) WBIR 2014. LNCS, vol. 8545, pp. 72–82. 
Springer, Cham (2014). 10.1007/978-3-319-08554-8.8

14. Yang X, Niethammer M: Uncertainty quantification for LDDMM using a low-rank hessian 
approximation In: Navab N, Hornegger J, Wells WM, Frangi AF (eds.) MICCAI 2015. LNCS, vol. 
9350, pp. 289–296. Springer, Cham (2015). 10.1007/978-3-319-24571-3_35

15. Younes L, Arrate F, Miller MI: Evolutions equations in computational anatomy. NeuroImage 45(1), 
S40–S50 (2009) [PubMed: 19059343] 

16. Zhang M, Fletcher PT: Bayesian principal geodesic analysis in diffeomorphic image registration 
In: Golland P, Hata N, Barillot C, Hornegger J, Howe R (eds.) MICCAI 2014. LNCS, vol. 8675, 
pp. 121–128. Springer, Cham (2014). 10.1007/978-3-319-10443-0_16

17. Zhang M, Fletcher PT: Finite-dimensional lie algebras for fast diffeomorphic image registration In: 
Ourselin S, Alexander DC, Westin C-F, Cardoso MJ (eds.) IPMI 2015. LNCS, vol. 9123, pp. 249–
260. Springer, Cham (2015). 10.1007/978-3-319-19992-4_19

18. Zhang M, et al.: Frequency diffeomorphisms for efficient image registration In: Niethammer M, et 
al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 559–570. Springer, Cham (2017). 
10.1007/978-3-319-59050-9_44

Wang et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Left to right: source image, target image, covariance matrix determinant estimated by 

baseline algorithm and our method.
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Fig. 2. 
Left to right: source image, target image, and uncertainty (visualized as the trace of 

covariacne) estimated by baseline algorithm and our method.
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Fig. 3. 
Left: eigenvalues of the Hessian matrix estimated by baseline algorithm; Right: comparison 

of runtime and memory consumption.
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