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Abstract. Normative modeling has recently been proposed as an alterna-
tive for the case-control approach in modeling heterogeneity within clinical
cohorts. Normative modeling is based on single-output Gaussian process
regression that provides coherent estimates of uncertainty required by
the method but does not consider spatial covariance structure. Here, we
introduce a scalable multi-task Gaussian process regression (S-MTGPR)
approach to address this problem. To this end, we exploit a combination of
a low-rank approximation of the spatial covariance matrix with algebraic
properties of Kronecker product in order to reduce the computational
complexity of Gaussian process regression in high-dimensional output
spaces. On a public fMRI dataset, we show that S-MTGPR: 1) leads
to substantial computational improvements that allow us to estimate
normative models for high-dimensional fMRI data whilst accounting for
spatial structure in data; 2) by modeling both spatial and across-sample
variances, it provides higher sensitivity in novelty detection scenarios.

Keywords: Gaussian Processes, Multi-Task Learning, Normative Mod-
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1 Introduction

Understanding the underlying biological mechanisms of psychiatric disorders
constitutes a significant step toward developing more effective and individualized
treatments (i.e., precision medicine [11]). Recent advances in neuroimaging and
machine learning provide an exceptional opportunity to employ brain-derived bi-
ological measures for this purpose. While symptoms and biological underpinnings
of mental diseases are known to be highly heterogeneous, data-driven approaches
play an important role in stratifying clinical groups into more homogeneous sub-
groups. Currently, off-the-shelf clustering algorithms are the most predominant
approaches for stratifying clinical cohorts. However, the high-dimensionality and
complexity of data beside the use of heuristics to find optimal clustering solutions
negatively affect the reproducibility and reliability of resulting clusters [10]. Nor-
mative modeling [9] offers an alternative approach to model biological variations
within clinical cohorts without needing to assume cleanly separable clusters or
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cohorts. This approach is applicable to most types of neuroimaging data such as
structural/functional magnetic resonance imaging (s/fMRI).

Normative modeling employs Gaussian process regression (GPR) [16] to pre-
dict neuroimaging data on the basis of clinical and/or behavioral covariates.
GPR, and in general Bayesian inference, can be seen as an indispensable part
of the normative modeling as it provides coherent estimates of predictive confi-
dence. These measures of predictive uncertainty are important for quantifying
centiles of variation in a population [9]. GPR also provides the possibility to
accommodate both linear and nonlinear relationships between clinical covariates
and neuroimaging data.

The variant of GPR originally employed for normative modeling aims to
model only a single output variable. Thus in normative modeling, one should
independently train separate GPR models for each unit of measurement (e.g.,
for each voxel in a mass-univariate fashion). Such a simplification ignores the
possibility of modeling and capitalizing on the existing spatial structure in the
output space. However, GPR can be extended to perform a joint prediction
across multiple outputs in order to account for correlations between variables
in neuroimaging data (for example different voxels in fMRI data). Boyle and
Frean [6] proposed to employ convolutional processes to express each output as
the convolution between a smoothing kernel and a latent function. This idea
is later adopted by Bonilla et al. [5] to extend the classical single-task GPR
(STGPR) to multi-task GPR (MTGPR) by coupling a set of latent functions
with a shared GP prior in order to directly induce correlation between output
variables (tasks). They proposed to disentangle the full cross-covariance matrix
into the Kronecker product of the sample (in input space) and task (in output
space) covariance matrices. This technique provides the possibility to model both
across-sample and across-task variations. Despite its effectiveness in modeling
structures in data, MTGPR comes with extra computational overheads in time
and space, especially when dealing with high-dimensional neuroimaging data. We
briefly review recent efforts toward alleviating these computational burdens.

1.1 Toward Efficient and Scalable MTGPR

For N samples and T tasks, the time and space complexity of MTGPR are
O(N3T 3) and O(N2T 2), respectively. These high computational demands (com-
pared to STGPR with O(N3T ) and O(N2T )) are mainly due to the need for
computing the inverse cross-covariance matrix in learning and inference phases.
In neuroimaging problems that we consider, these can both be relatively high
where N in generally in the order of 102 − 104 and T is in the order of 104 − 105

or even higher. Therefore, improving the computational efficiency of MTGPR is
crucial for certain problems, and there have been several approaches proposed
for this in the machine learning literature [13,3]. Here we briefly review two main
directions to address the computational tractability issue of MTGPR.

In the first set of approaches, approximation techniques are used to improve
estimation efficiency. Bonilla et al. [5] made one of the earliest efforts in this
direction, in which they proposed to use Nyström approximation on M inducing



inputs [13] out of N samples in combination with the probabilistic principal
component analysis, in order to approximate reduced M -rank and P -rank sample
and task covariance matrices, respectively. Their approximation reduced the time
complexity of hyperparameter learning to O(NTM2P 2). Elsewhere, Alvarez and
Lawrence [2] proposed to approximate a sparse version of MTGPR, assuming
conditional independence between each output variable with all others given
the input process. This assumption besides using M out of N input samples as
inducing inputs reduces the computational complexity of MTGPR to O(N3T +
NTM2) and O(N2T + NTM) in time and storage, where for N = M is the
same as a set of T independent STGPRs. Alvarez et al. in [4] extended their
previous work by developing the concept of inducing function rather than inducing
input. Their new approach so-called variational inducing kernels achieves time
complexity of O(NTM2).

The second set of approaches utilize properties of Kronecker product [8] to
reduce the time and space complexity in computing the exact (and not approxi-
mated) inverse covariance matrix. Stegle et al. [15] proposed to use these properties
in combination with eigenvalue decomposition of input and task covariance ma-
trices for efficient parameter estimation, and likelihood evaluation/optimization
in MTGPR. In this method, the joint covariance matrix is defined as a Kronecker
product between the input and task covariance matrices. This approach reduces
the time and space complexity of MTGPR to O(N3 + T 3) and O(N2 + T 2),
respectively. To account also for structured noise, Rakitsch et al. [14] extended
this method by using two separate Kronecker products for the signal and noise.
Importantly, this provides a significant reduction in computational complexity
using all samples (i.e., not just inducing inputs), and is exact in the sense that it
does not require any approximation or relaxing assumptions.

Our contribution: In spite of all aforementioned efforts, applications of MT-
GPR in encoding neuroimaging data from a set of clinically relevant covariates
remained very limited, mainly due to the high dimensionality of the output space
(i.e., very large T ). Our main contribution in this text addresses this problem
and extends MTGPR to the normative modeling of neuroimaging data. To this
end, we use a combination of low-rank approximation of the task covariance
matrix with algebraic properties of Kronecker product in order to reduce the
computational complexity of MTGPR. Furthermore, on a public fMRI dataset,
we show that: 1) our method makes MTGPR possible on very high-dimensional
output spaces; 2) it enables us to model both across-space and across-subjects
variations, hence provides more sensitivity for the resulting normative model in
novelty detection.

2 Methods

2.1 Notation

Boldface capital letters, A, and capital letters, A, are used to denote matrices and
scalar numbers. We denote the vertical vector which is resulted from collapsing
columns of a matrix A ∈ RN×T with vec(A) ∈ RNT . In the remaining text,
we use ⊗ and � to respectively denote Kronecker and the element-wise matrix



products. We denote an identity matrix by I; and the determinant, diagonal
elements, and the trace of matrix A with |A|, diag(A), and Tr[A], respectively.

2.2 Scalable Multi-Task Gaussian Process Regression

Let X ∈ RN×F be the input matrix with N samples and F covariates. Let
Y ∈ RN×T represent a matrix of response variables with N samples and T tasks
(here, neuroimaging data with T voxels). The multi-task Kronecker Gaussian
process model (MT-Kronprod) [15] is defined as:

p(Y | D,R, σ2) = N (Y | 0,D⊗R + σ2I) , (1)

where D ∈ RT×T and R ∈ RN×N are respectively the task and sample covariance
matrices (here, modeling correlations across voxels and samples separately).
Despite its effectiveness in modeling both samples and tasks variations, the
application of MT-Kronprod is limited when dealing with very large output spaces,
such as neuroimaging data, mainly due to the high computational complexity of
matrix diagonalisation operations in the optimization and inference phases. We
propose to address this problem by using a low-rank approximation of D.

Let Φ : Y → Z be an orthogonal linear transformation, e.g., principal
component analysis (PCA), that transforms Y to a reduced latent space Z ∈
RN×P , where P < T , and we have Z = Φ(Y) = YB. Here, columns of B ∈ RT×P
represent a set of P orthogonal basis functions. Assuming a zero-mean matrix
normal distribution for Z, by factorizing its rows and columns we have:

p(Z | C,R) =MN (0,C⊗R) =
exp(− 1

2
Tr[C−1B>Y>R−1YB])√
(2π)NP |C|P |R|N

, (2)

where C ∈ RP×P and R ∈ RN×N are column and row covariance matrices of
Z. Using the trace invariance property under cyclic permutations, the noise-free
multivariate normal distribution of Y can be approximated from Eq. 2:

p(Y | D,R) ≈ p(Y | C,B,R) =
exp(− 1

2
Tr[BC−1B>Y>R−1Y])√

(2π)NT
∣∣BCB>

∣∣T |R|N , (3)

where D is approximated by BCB>. Our scalable multi-task Gaussian process
regression (S-MTGPR) model is then derived by marginalizing over noisy samples:

p(Y | D,R, σ2) ≈ p(Y | C,B,R, σ2) = N (Y | 0,BCB> ⊗R + σ2I) . (4)

Predictive Distribution: Following the standard GPR framework [16] and

setting D̃ = BCB>, the mean and variance of the predictive distribution of
unseen samples, i.e., p(vec(Y)∗ | vec(M∗),V∗), can be computed as follows:

vec(M∗) = (D̃⊗R∗)(D̃⊗R + σ2I)−1vec(Y), (5a)

V∗ = (D̃⊗R∗∗)− (D̃⊗R∗)(D̃⊗R + σ2I)−1(D̃⊗R∗>), (5b)

where R∗∗ ∈ RN∗×N∗ is the covariance matrix of N∗ test samples , and R∗ ∈
RN∗×N is the cross-covariance matrix between test and training samples.



Efficient Prediction and Optimization: For efficient prediction, and fast
optimization of the log-likelihood, we extend the approach proposed in [15,14]
by exploiting properties of Kronecker product, and eigenvalue decomposition for
diagonalizing the covariance matrices. Then the predictive mean and variance
can be efficiently computed by:

M∗ = R∗URỸU>CCB>, (6a)

V∗ = (D̃⊗R∗∗)− (BCUC ⊗R∗UR)K̃−1(U>CCB> ⊗U>RR
∗>

), (6b)

where C = UCSCU>C and R = URSRU>R are eigenvalue decomposition of covari-

ance matrices, K̃ = SC⊗SR+σ2I, and vec(Ỹ) = diag(K̃−1)�vec(U>RYBUC).3

Based on our assumption on the orthogonality of components in B, we set
B−1 = B> and B>B = I. Note that in the new parsimonious formulation, heavy
time and space complexities of computing the inverse kernel matrix is reduced to
computing the inverse of a diagonal matrix, i.e., reciprocals of diagonal elements
of K̃. For the predictive variance, explicit computation of the Kronecker product
is still necessary but this can easily be overcome by computing the predictions in
mini-batches. For the negative log marginal likelihood of Eq. 4, we have:

L = −N × T
2

ln(2π)− 1

2
ln
∣∣∣K̃∣∣∣− 1

2
vec(U>RYBUC)>vec(Ỹ) . (7)

The proposed S-MTGPR model has three sets of parameters plus one hyper-
parameter: 1) reduced task covariance matrix parameters ΘC, 2) input covariance
matrix parameters ΘR, 3) noise variance σ2 that is parametrized on Θσ2 , and
4) P that decides the number of components in B. While the latter should
be decided by means of model selection, the first three sets are optimized by
maximizing L.

Computational Complexity: The time complexity of the proposed method
is O(N2T + NT 2 + N3 + P 3). The first two terms are related to the matrix
multiplication in computing the squared term in Eq.7. The last two terms belong
to the eigenvalue decomposition of R and C. The P 3 term can be excluded because
always P ≤ min(N,T ). Thus, for N > T and N < T the time complexity is
reduced to O(N3) and O(NT 2), respectively. Thus when N > T or N < T < N2,
our approach is analytically even faster than the baseline STGPR approach
applied independently to each output variable in a mass-univariate fashion. For
N � T , our method is faster than other Kronecker based MTGPRs by a factor
of T/N . Such improvement not only facilitates the application of MTGPR on
neuroimaging data but also it provides the possibility of accounting for the
existing spatial structures across different brain regions. In comparison to the
related work, the proposed method provides a substantial speed improvement,
especially when dealing with a large number of tasks. This is while unlike other
approximation approaches, we fully use the potential of all available samples.

3 Experiments and Results
3.1 Experimental Materials and Setup

In our experiments, we use a public fMRI dataset collected for reconstructing
visual stimuli (black and white letters and symbols) from fMRI data [12]. In this

3
See supplementary materials for more descriptive derivations of all equations.



Table 1. Three benchmarked methods in our experiments.

Method
Time

Complexity
No.

Parameters
Parameter
Description

STGPR O(N3T ) 21752
1 for linear and 2 for squared exponential kernels, 1 for Gaussian likelihood;

multiplied by the number of tasks (5438).

MT-Kronprod O(T 3) 9
1 for linear, 2 for squared exponential, and 1 for diagonal isotropic kernels; multiplied

by 2 (for sample and task covariance functions); plus 1 for Gaussian likelihood.

S-MTGPR O(NT 2) 10 Same as MT-Kronprod, plus 1 hyperparameter for the number of PCA bases.

dataset, fMRI responses were measured while 10× 10 checkerboard patch images
were presented to subjects according to a blocked design. Checkerboard patches
constituted random (1320 trials) and geometrically meaningful patterns (720
trials). We use the preprocessed data available in Nilearn package [1] wherein the
fMRI data are detrended and masked for the occipital lobe (5438 voxels).4 Whilst
our approach is quite general, we demonstrate S-MTGPR by simulating normative
modeling for novelty detection. Therefore, we aim to predict the masked fMRI
3D-volume from the presented visual stimuli in an encoding setting. To this end,
we randomly selected 600 random pattern trials, for training the encoding model.
The model then learns to represent this reference or normative class such that
anomalous or abnormal samples can be detected and characterised. The rest
of non-random patterns (720 trials) and random patterns (720 trials) are used
for evaluating the encoding model and testing anomaly-detection performance,
achieved by fitting a generalised extreme value distribution to the most deviating
voxels. In our experiments, we use PCA to transform the fMRI data in the training
set from the voxel space to Z, and the resulting P = 10, 25, 50, 100, 250, 500, 1000
PCA components are used as basis matrix B in the optimization and inference.

We benchmark the proposed method against the STGPR (i.e., mass-univariate)
and MT-Kronprod models in terms of their runtime, performance of the regression,
and quality of resulting normative models. In all models, we use a summation
of a linear, a squared exponential, and a diagonal isotropic covariance functions
for sample and task covariance matrices in order to accommodate both linear
and non-linear relationships. In all cases, we use an isotropic Gaussian likelihood
function. This likelihood function has different functionality in the STGPR versus
MTGPR settings. In STGPR, it is defined independently for each voxel, thus it
handles heteroscedastic, i.e., spatially varying noise. While in MTGPR a single
noise parameter is shared for all voxels, hence it merely considers homoscedastic,
i.e., spatially stationary, noise. The truncated Newton algorithm is used for
optimizing the parameters. Table 1 summarizes the time complexity and the
number of parameters of three benchmarked methods in our experiments.

We use the coefficient of determination (R2) to evaluate the explained variance
by regression models. In normative modeling, the top 5% values in normative
probability maps are used to fit the generalized extreme value distribution (see [9]).
To evaluate resulting normative models, we employ area under the curve (AUC)
to measure the performance of the model in distinguishing between normal (here
random patterns) from abnormal samples (here non-random patterns). All the
steps (random sampling, modeling, and evaluation) are repeated 10 times in order
to estimate the mean and standard deviation of the runtime, R2, and AUC. All

4
See http://nilearn.github.io/auto_examples/02_decoding/plot_miyawaki_reconstruction.html.

http://nilearn.github.io/auto_examples/02_decoding/plot_miyawaki_reconstruction.html


(a) (b) (c)

(Zoomed)

Fig. 1. Comparison between S-MTGPR, STGPR, and MT-Kronprod in terms of: a)
optimization and prediction runtime, b) average regression performance (R2) across all
voxels, and c) AUC in abnormal sample detection using normative modeling.

experiments are performed on a system with Intel R©Xeon R©E5-1620 0 @3.60GHz
CPU and 16GB of RAM.5

3.2 Results and Discussion

Fig. 1 compares the runtime, R2, and AUC of STGPR and MT-Kronprod, with
those of S-MTGPR for different number of bases. As illustrated in Fig. 1(a) S-
MTGPR is faster than other approaches where the total runtime of MT-Kronprod
(3 days) and STGPR (6 hours) can be reduced to 16 minutes for P = 25. This
difference in runtime is even more pronounced in case of the optimization time
where S-MTGPR is at least (for P = 1000) 33 and 89 times faster than STGPR
and MT-Kronprod, respectively. The multi-task approaches are slower than
STGPR in the prediction phase mainly due to the mini-batch implementation
of the prediction variance computation (to avoid memory overflow). Fig. 1(b)
shows this computational efficiency is achieved without penalty to the regression
performance; where for certain number of bases the S-MTGPR shows equivalent
and even better R2 than STGPR and MT-Kronprod. Furthermore, Fig. 1(c)
demonstrates that multi-task learning, by considering spatial structures, generally
provides a more accurate normative model of fMRI data in that it more accurately
detects samples that were derived from a different distribution to those used to
train the model. This fact is well-reflected in higher AUC values for S-MTGPR at
P = 25, 100, 250, 500, 1000. It is worthwhile to emphasize that these improvements
are achieved by reducing the degree-of-freedom of the normative model from
21752 for STGPR to 10 for S-MTGPR (see Table 1).

4 Conclusions and Future Work

Assuming a matrix normal distribution on a reduced latent output space, we intro-
duced an efficient and scalable multi-task Gaussian process regression approach
to learning complex association between external covariates and high-dimensional
neuroimaging data. Our experiments on an fMRI dataset demonstrate the su-
periority of the proposed approach against other single-task and multi-task

5
The experimental codes are available at https://github.com/smkia/MTNorm.

https://github.com/smkia/MTNorm


alternatives in terms of the computational time complexity. This superiority
was achieved without compromising the regression performance, and even with
higher sensitivity to abnormal samples in the normative modeling paradigm. Our
methodological contribution advances the current practices in the normative
modeling from the single-voxel modeling to multi-voxel structural learning. For
future work, we will consider enriching the proposed approach by embedding more
biologically meaningful basis functions [7], structural modeling of non-stationary
noise, and applying our method to clinical cohorts.

References

1. Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J.,
Gramfort, A., Thirion, B., Varoquaux, G.: Machine learning for neuroimaging with
scikit-learn. Frontiers in Neuroinformatics 8, 14 (2014)

2. Alvarez, M., Lawrence, N.D.: Sparse convolved Gaussian processes for multi-output
regression. In: Advances in neural information processing systems. pp. 57–64 (2009)
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Supplementary Materials

Throughout the supplementary materials we use the same notation introduced
in the main text.

Useful Equations

For A ∈ RM×N , B ∈ RP×Q, and C, D (with appropriate size) we have:

1. A = UASAU>A is the eigenvalue decomposition of A,
2. (ACB)−1 = B−1C−1A−1,
3. (A⊗B)(C⊗D) = AC⊗BD,
4. (A⊗B)−1 = A−1 ⊗B−1,
5. the eigenvalue decomposition of A⊗B + I is:

(UA ⊗UB)(SA ⊗ SB + I)(U>A ⊗U>B),

6. (A⊗B)vec(C) = vec(BCA>),
7. ln |AC| = ln(|A| |C|) = ln |A|+ ln |C|,
8. for C ∈ RN×N , d

dx ln |C| = Tr[C−1 dC
dx ],

9. Tr[ACBD] = Tr[CBDA] = Tr[BDAC] = Tr[DACB].

Efficient Mean Prediction

Eq. 6(a) is derived from Eq. 5(a) as follows:

vec(M∗) = (BCB> ⊗R∗)(BCB> ⊗R + σ2I)−1vec(Y)

= (BCB> ⊗R∗)(BUCSCU>CB> ⊗URSRUR
> + σ2I)−1vec(Y)

= (BCB> ⊗R∗)[(BUC ⊗UR)(SC ⊗ SR + σ2I)(U>CB> ⊗U>R)]−1vec(Y)

= (BCB> ⊗R∗)(BUC ⊗UR)(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)vec(Y)

= (BCB> ⊗R∗)(BUC ⊗UR)(SC ⊗ SR + σ2I)−1vec(U>RYBUC)

= (BCB>B︸ ︷︷ ︸
I

UC ⊗R∗UR) diag[(SC ⊗ SR + σ2I)−1]� vec(U>RYBUC)︸ ︷︷ ︸
vec(Ỹ)

= R∗URỸU>CCB> .

Efficient Variance Prediction

Eq. 6(b) is derived from Eq. 5(b) as follows:

V∗ = (BCB> ⊗R∗∗)− (BCB> ⊗R∗) (BCB> ⊗R + σ2I)−1︸ ︷︷ ︸
K−1

(BCB> ⊗R∗>)

= (BCB> ⊗R∗∗)− (BCB> ⊗R∗)(BUC ⊗UR)(SC ⊗ SR + σ2I)−1

(U>CB> ⊗U>R)(BCB> ⊗R∗>)

= (BCB> ⊗R∗∗)− (BCUC ⊗R∗UR) (SC ⊗ SR + σ2I)−1︸ ︷︷ ︸
K̃−1

(U>CCB> ⊗U>RR∗>) .



Efficient Log Marginal Likelihood Evaluation

Eq. 7 is derived as follows:

L = −N × T
2

ln(2π)− 1

2
ln |K| − 1

2
vec(Y)>K−1vec(Y)

= −N × T
2

ln(2π)− 1

2
ln
∣∣∣BCB> ⊗R + σ2I

∣∣∣− 1

2
vec(Y)>(BCB> ⊗R + σ2I)−1vec(Y)

= −N × T
2

ln(2π)− 1

2
ln
∣∣∣(BUC ⊗UR)(SC ⊗ SR + σ2I)(U>CB> ⊗U>R)

∣∣∣
− 1

2
vec(Y)>(BUC ⊗UR)(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)vec(Y)

= −N × T
2

ln(2π)− 1

2
ln
∣∣∣(U>CB> ⊗U>R)(BUC ⊗UR)

∣∣∣︸ ︷︷ ︸
ln|I|=0

−1

2
ln
∣∣(SC ⊗ SR + σ2I)

∣∣
− 1

2
vec(U>RYBUC)> diag[(SC ⊗ SR + σ2I)−1]� vec(U>RYBUC)︸ ︷︷ ︸

vec(Ỹ)

= −N × T
2

ln(2π)− 1

2
ln
∣∣(SC ⊗ SR + σ2I)

∣∣︸ ︷︷ ︸
|K̃|

−1

2
vec(U>RYBUC)>vec(Ỹ) .

Derivatives of L with Respect to Parameters

In the optimization process, the derivatives of L with respect to θC ∈ ΘC,
θR ∈ ΘR, and θσ2 ∈ Θσ2 can be efficiently computed as follows:

Gradients of L with Respect to θC:

∂L
∂θC

=−
1

2
diag(K̃

−1
)
>
[diag(U

>
C

∂C

∂θC
UC)⊗ diag(SR)] +

1

2
vec(Ỹ)

>
vec(SRỸU

>
C

∂C

∂θC
UC),

where the determinant term of the above equation is derived by computing the
derivative of ln |K|:

∂ ln |K|
∂θC

=
∂

∂θC
[ln
∣∣∣BCB> ⊗R + σ2I

∣∣∣] = Tr[(BCB> ⊗R + σ2I)−1 ∂

∂θC
(BCB> ⊗R + σ2I)]

= Tr[(BUC ⊗UR)(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)(B
∂C

∂θC
B> ⊗R)]

= Tr[(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)(B
∂C

∂θC
B> ⊗R)(BUC ⊗UR)]

= Tr[K̃−1(U>CB>B
∂C

∂θC
B>BUC ⊗U>RRUR)] = Tr[K̃−1(U>C

∂C

∂θC
UC ⊗ SR)]

= diag(K̃−1)>[diag(U>C
∂C

∂θC
UC)⊗ diag(SR)] ,



and for the squared term we have:

∂

∂θC
[vec(Y)>K−1vec(Y)] =

∂

∂θC
[vec(Y)>(BCB> ⊗R + σ2I)−1vec(Y)]

= −vec(Y)>(BCB> ⊗R + σ2I)−1[
∂

∂θC
(BCB> ⊗R + σ2I)](BCB> ⊗R + σ2I)−1vec(Y)

= −vec(Y)>(BUC ⊗UR)(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)(B
∂C

∂θC
B> ⊗R)

(BUC ⊗UR)(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)vec(Y)

= −[vec(U>RYBUC)> � diag(K̃−1)](U>CB>B
∂C

∂θC
B>BUC ⊗U>RRUR)

[diag(K̃−1)� vec(U>RYBUC)︸ ︷︷ ︸
vec(Ỹ)

] = −vec(Ỹ)>vec(SRỸU>C
∂C

∂θC
UC) .

Gradients of L with Respect to θR:

∂L
∂θR

=−
1

2
diag(K̃

−1
)
>
[diag(SC)⊗ diag(U>R

∂R

∂θR
UR)] +

1

2
vec(Ỹ)

>
vec(U

>
R

∂R

∂θR
URỸSC), (8)

where the determinant term of the above equation is derived by computing the
derivative of ln |K|:

∂ ln |K|
∂θR

=
∂

∂θR
[ln
∣∣∣BCB> ⊗R + σ2I

∣∣∣] = Tr[(BCB> ⊗R + σ2I)−1 ∂

∂θR
(BCB> ⊗R + σ2I)]

= Tr[(BUC ⊗UR)(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)(BCB> ⊗ ∂R

∂θR
)]

= Tr[(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)(BCB> ⊗ ∂R

∂θR
)(BUC ⊗UR)]

= Tr[K̃−1(U>CB>BCB>BUC ⊗U>R
∂R

∂θR
UR)] = Tr[K̃−1(SC ⊗U>R

∂R

∂θR
UR)]

= diag(K̃−1)>[diag(SC)⊗ diag(U>R
∂R

∂θR
UR)] ,

and for the squared term we have:

∂

∂θR
[vec(Y)>K−1vec(Y)] =

∂

∂θR
[vec(Y)>(BCB> ⊗R + σ2I)−1vec(Y)]

= −vec(Y)>(BCB> ⊗R + σ2I)−1[
∂

∂θR
(BCB> ⊗R + σ2I)](BCB> ⊗R + σ2I)−1vec(Y)

= −vec(Y)>(BUC ⊗UR)(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)(BCB> ⊗ ∂R

∂θR
)

(BUC ⊗UR)(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)vec(Y)

= −[vec(U>RYBUC)> � diag(K̃−1)](U>CB>BCB>BUC ⊗U>R
∂R

∂θR
UR)

[diag(K̃−1)� vec(U>RYBUC)︸ ︷︷ ︸
vec(Ỹ)

] = −vec(Ỹ)>vec(U>R
∂R

∂θR
URỸSC) .



Gradients of L with Respect to θσ2 :

∂L
∂θσ2

=− 1

2

∂σ2

∂θσ2
[Tr[K̃−1] + vec(Ỹ)>vec(Ỹ)] , (9)

where the determinant term of the above equation is derived by computing the
derivative of ln |K|:

∂ ln |K|
∂θσ2

=
∂

∂θσ2
[ln
∣∣∣BCB> ⊗R + σ2I

∣∣∣] = Tr[(BCB> ⊗R + σ2I)−1 ∂σ
2

∂θσ2
]

=
∂σ2

∂θσ2
Tr[(BUC ⊗UR)(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)]

=
∂σ2

∂θσ2
Tr[(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)(BUC ⊗UR)]

=
∂σ2

∂θσ2
Tr[K̃−1(U>CB>BUC ⊗U>RUR)] =

∂σ2

∂θσ2
Tr[K̃−1] ,

and for the squared term we have:

∂

∂θσ2
[vec(Y)>K−1vec(Y)] =

∂

∂θσ2
[vec(Y)>(BCB> ⊗R + σ2I)−1vec(Y)]

= −vec(Y)>(BCB> ⊗R + σ2I)−1[
∂

∂θσ2
(BCB> ⊗R + σ2I)](BCB> ⊗R + σ2I)−1vec(Y)

= −vec(Y)>(BUC ⊗UR)(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)
∂σ2

∂θσ2

(BUC ⊗UR)(SC ⊗ SR + σ2I)−1(U>CB> ⊗U>R)vec(Y)

= − ∂σ2

∂θσ2
[vec(U>RYBUC)> � diag(K̃−1)](U>CB>BUC ⊗U>RUR)

[diag(K̃−1)� vec(U>RYBUC)︸ ︷︷ ︸
vec(Ỹ)

] = − ∂σ2

∂θσ2
vec(Ỹ)>vec(Ỹ) .

Normative Modeling

Let ŷij and σ2
ij be the prediction mean and variance of the ith test sample at

the jth voxel. Further, let σ2
nj be the variance of the noise that is estimated by

GPR at the jth voxel. Then the normative probability map (NPM) for the ith
sample at jth voxel is defined as follows:

NPMij =
yij − ŷij√
σ2
ij + σ2

nj

,

where yij is the true output. Having computed NPMs for all samples and brain
locations, the abnormality index of each sample can be computed by fitting a
generalized extreme value distribution (GEVD). We fit GEVD on the distribution
of robust means of top 5% voxels (in absolute value) across all NPMs. The resulting
distribution is used to compute the probability of each sample being abnormal.
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