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Abstract

Single subject task-based fMRI analyses generally suffer from low detection sensitivity with 

parameter estimates from the general linear model (GLM) lying below the significance threshold 

especially for similar contrasts or conditions. In this paper, we present a shape-based approach for 

alignment of condition-specific time course activity for single subject task-based fMRI. Our 

approach extracts signals for each condition from the entire time course, constructs an unbiased 

average of those signals, and warps each signal to the mean. As the warping is diffeomorphic, non-

linear and allows large deformations of time series if required, we term this approach as elastic 

functional registration. On a single subject level, our method significantly detects more clusters 

and more activated voxels in relevant subcortical regions in healthy controls.

1 Introduction

Task based functional magnetic resonance imaging (fMRI) is a powerful approach for 

examining time varying changes in brain metabolism as a response to a pre-determined 

stimulus [3]. Two main challenges for fMRI analysis are i) estimation of the shape or pattern 

of the response ii) detection of the blood oxygenation level dependent (BOLD) activity, as it 

only represents a small percentage of the variance of the signal. Non-neuronal contributions 

such as physiological noise, thermal noise and hardware instabilities, hamper small changes 

in brain activity from being detected. Low statistical power is therefore mostly caused due to 

a low sample size or due to a low effect size of the conditions being studied. In order to 

increase statistical power, research studies typically increase the sample size and perform a 

group-level analysis to improve both detection and estimation. In this work we focus on the 

problem of improving statistical power of activations for single subject fMRI analysis by 

performing functional alignment.

Recently, there have been several interesting approaches [4, 5, 10, 9] that have proposed the 

synchronization or alignment of fMRI signals primarily for resting state data. Although the 

end goal in all these methodologies is aligning fMRI time courses to each other, in our work 

we adopt a different approach. Particularly in the task-based fMRI setting, we would expect 

the alignment to achieve increased consensus between parts of the time course that 

correspond to the same stimulus condition. There are several alternatives for solving this 

problem. i) Given a set of time series to be aligned, one could choose any arbitrary time 
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course randomly from this set as a template and align all functions to it. This can introduce a 

potential bias towards the arbitrary chosen template. ii) On the other hand, one can achieve 

all possible registrations of functions and choose a particular time series template that 

satisfies a certain optimality condition. This issue is similar to the one faced in image/shape 

registration, where the choice of the template or atlas is critical. Further, the process of 

alignment itself can be achieved either using a least squares criterion [4, 5] or using the 

dynamic time warping (DTW) approach [10]. The process of least squares alignment is 

usually non-elastic and thus doesn’t account for temporal reparameterizations. The DTW 

approach does provide an elegant way of recovering temporal misalignment, but does not 

directly allow for the computation of an intrinsic average, which is important for template 

estimation on the space of time series functions. Thus one still needs to resort to extrinsic 

(generally Euclidean) minimization criteria to determine the optimal template.

In our work, we provide a single solution to the above two problems. We use an elastic time 

series matching approach to construct an unbiased template of this shape pattern and align 

the condition-specific time course activity to this template. We treat the problem of aligning 

fMRI data as a shape matching problem [9] and to achieve elastic alignment between time 

courses to bring the BOLD responses into correspondence. On a single subject level, our 

method significantly detects more clusters and more activated voxels in relevant subcortical 

regions in healthy controls. To our knowledge, this is the first work that performs nonlinear 

elastic temporal registration of task-based fMRI signals.

2 Single Subject Temporal Alignment

This section outlines the main approach. Figure 1 shows a schematic of the procedure. The 

notation and discussion below is described for a fMRI time series acquisition using a 

blocked design at a single voxel in the brain. Let the conditions for the task and the number 

of blocks per condition be denoted by Ci, i = 1, …, k and Bj, j = 1, …, n respectively. 

Generally we assume that the total number of blocks stay fixed across all conditions. Each 

block is assumed to have a boxcar shape that stays zero throughout the resting period and 

has a unit magnitude for the duration of the task. Thus for a given task condition Ci, the 

function for block Bj is denoted by gB j

Ci(t) = U t − t j1
i − U t − t j2

i , ∀t ∈ [0, T], where T is the 

total acquisition time. Here t j1
i  and t j2

i  are the stimulus on and off times for condition Ci and 

block Bj. Thus the blocked design stimulus function for the entire duration of the task is 

given by gB
C(t) = ∑i = 1

k ∑ j = 1
n gB j

Ci(t), ∀t ∈ [0, T]. Let the corresponding acquired fMRI time 

course due to the BOLD hemodynamic response be given by h(t), ∀t ∈ [0, T]. Our goal is to 

achieve within-condition temporal reparameterization or alignment across the entire fMRI 

time series given by h. Therefore for each condition Ci, we extract the BOLD response 

functions as the set f j
i (t) , where
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f j
i (t) = 0,  where 0 ≤ t ≤ t j1

i

= gB j

Ci(t)h(t),  where t j1
i ≤ t ≤ t j2

i , i = 1, …, k, j = 1, …, n .

= 0,  where t ≥ t j2
i

(1)

We now seek an optimal temporal alignment or registration among the set of functions given 

by f j
i (t) . This is achieved using the square root velocity parameterization [7, 6, 12] for the 

representation of functions. We describe this idea in brief below and refer the reader to [7, 6, 

12] for more details. For the discussion below, we drop the subscripts i, j for convenience. 

For a given fMRI time course signal f : I ≡ [0, 1] ℝ, and its velocity ḟ (t) = d f
dt  and 

magnitude | ḟ (t)|, we define its functional representation by the square-root velocity field 

(SRVF) map q given by q: [0, 1] ℝ, q(t) = ḟ (t)
| ḟ (t)|

. For an absolutely continuous f, the SRVF 

transformation ensures that q is square integrable. The set of SRVFs is then given by 

𝕃2([0, 1], ℝ), which is a Hilbert space. To recover the time domain fMRI signal, we use 

f (t) = f (0) + ∫ 0
t q(τ) |q(τ) |dτ. The SRVF mapping is invertible up to a given f(0). We assume 

f(0) = 0 as the initial condition of the fMRI signal at time t = 0. One can impose an 

analogous unit length constraint on the q function by obtaining q = q
q

. This unit length 

transformation forces q to lie on a Hilbert sphere denoted by 𝕊 f . The space 𝕊 f  is defined as 

𝕊 f ≡ q ∈ 𝕃2 | ∫ 0
1(q(s), q(s))

ℝ2ds = 1, q(s): [0, 1] ℝ2 .

2.1 Unbiased Within-condition Time Series Template Estimation

To match the shape of the responses within conditions, we use the idea of time 

reparameterization to shift the signals to maximize peaks and troughs of functional activity. 

The time reparameterization function is represented by diffeomorphic function γ : I → I, 
where γ̇ > 0, ∀t ∈ I. To change the time domain parameterization, one can compose f with γ 

as f ∘ γ. In the SRVF domain, this is given by q ⋅ γ = ( ḟ ∘ γ)γ̇
|( f ∘ γ)γ̇| = (q ∘ γ) γ̇. To compute an 

unbiased optimal template that represents an average functional response related to the 

condition of the task, we exploit the geometry of the space of these time course 

representations by defining the notion of a metric on the space of q functions. The 

Riemannian metric on the tangent space of this sphere Tq 𝕊 f  assumes an elastic form 

(invariance to temporal reparameterization) and is given by 〈q1, q2〉 = ∫t q1q2dt. The 

spherical geometry of the space of functions provides a convenient closed form solution for 

geodesics between two functions q1 and q2, which are given by χt(q1; v) = cos (t cos−1 〈q1, 

q2〉) q1 + sin (t cos−1 〈q1, q2〉)v where t ∈ [0, 1] and the initial tangent vector v ∈ Tq1
(𝒬) is 

given by v = q2 − 〈q1, q2〉q1 Then the geodesic distance between the two shapes q1 and q2 
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on 𝕊 f  given by d q1, q2 = ∫ 0
1 χ̇t, χ̇t dt. Following, the optimal temporal alignment is 

obtained as γ = argminγ ∈ Γ d q1, q2 ⋅ γ  by a combination of dynamic programming and 

gradient descent. This optimal γ  yields the temporal reparameterization (alignment) between 

two time course signal portions.

Now for the time series, for a given task condition k, we find the Karcher mean [8] of the set 

f j
k  as solving μk = argminq d q, q j

k 2
, which gives us the unbiased within-condition time 

series template. We align all the time courses for the condition to this mean μ to achieve 

temporal alignment of all the partial time courses for that condition. Algorithm 1 outlines the 

procedure for performing within-subject blocked condition-wise optimal reparameterization 

for task based fMRI time courses.

3 Results

Data:

Imaging data was acquired from ten healthy subjects on a Siemens 3T PRISMA scanner. 

Task fMRI scans were acquired using a multiband (MB) EPI sequence (TE = 37ms, TR = 

800ms, voxel size=2 × 2 × 2 mm3, FA=52°, MB accl. factor=8) and a T1w structural scan 

(TE=4.6ms, TR=9.9ms, voxel size=0.8 × 0.8 × 0.8 mm3, FA=2°) was also acquired. The 

functional task consisted of a previously validated face-matching paradigm [1], where four 

different types of images are presented to the subject: neutral, happy, and fearful faces, and 

objects. In this work, we exclusively considered all the 60 subcortical regions of interest 

(ROIs) extracted from a widely used automated segmentation protocol for our analysis [2]. 

After performing standard preprocessing and within-subject function to structure registration 

steps [11], algorithm 1 was applied to each individual subject for four contrasts; happy > 
neutral, fearful > neutral, happy > fearful, and fearful > happy face stimuli. Figure 2 shows 

examples of fMRI hyperalignment for time courses from the amygdala and the putamen. 

Single subject GLM analyses were conducted using FEAT [11] and statistical maps were 

generated for both the original and the warped volumes.
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Single Subject Analysis:

Results show robust differences in the activation maps of all 10 individual subjects before 

and after alignment. As an example, Fig. 3 shows the activation maps for two different 

subjects for the original data (in blue) and for the warped data (in orange) for two different 

contrasts (happy > neutral faces and fearful > neutral faces).

Here, for the happy > neutral contrast, Subject 1 shows activated clusters in the right and left 

putamen (cluster label a in Fig. 3) for the warped data, but not for the original data. For the 

same subject, both the original and the warped data show a cluster in the right putamen (b in 

Fig. 3), but only the warped data shows an activated cluster in the left caudate (c in Fig. 3) 

for the fearful > neutral contrast. For subject 2, only the warped data revealed clusters in the 

left putamen for happy > neutral and in the bilateral amygdala for fearful > neutral. The 

original data did not contain any activated cluster for both contrasts. These results agree with 

previously published literature implicating the putamen in positive emotional processing, 

and the role of amygdala in negative facial emotional processing [1] and suggest greater 

signal to noise for detecting regional differences in BOLD response after applying the 

warping procedure. Table 1 reports the significant clusters represented in Fig. 3.

Within Group Mean Activations:

To evaluate the group differences between the original data and the warped data we 

computed cluster thresholded averaged GLM maps across subjects for two contrasts (happy 

> neutral and fearful > objects) (Fig. 4). From these maps both the original data and the 

warped data show activated clusters in the cerebellum (cluster a in Fig. 4), in the right 

amygdala (cluster b in Fig. 4), in the bilateral putamen (cluster c in Fig. 4), and in the 

bilateral hippocampus (cluster d in Fig. 4). Interestingly only the warped data showed 

activated clusters in the bilateral caudate (cluster e in Fig. 4) as well as an extended cluster 

in the right putamen that followed its anatomical boundary.

Paired statistics between Warped and Unwarped images:

Finally, paired t-tests were computed to evaluate the change in the number of clusters and 

the number of voxels activated before and after performing elastic alignment for the four 

different conditions (happy > neutral; fearful > neutral; happy > objects and fearful > 
objects). There was a significant increase (Bonferroni corrected) in the number of clusters 

and number of voxels activated after applying warping (Table 2).

4 Discussion

We proposed an elastic time series matching approach to construct an unbiased condition-

specific template of the BOLD shape patterns. While the warped data shows increased 

number of clusters and voxels, we want to caution against the possibility of registration and 

enhancement of noisy activations. This can be potentially validated with repeated 

randomization tests and test-retest reliability statistics in the future. Further, the Riemannian 

metric used here promotes both shrinking, stretching and bending. Experiments that control 

the parameters of this metric will also yield useful data addressing this question. Finally, 

additional testing of this method on event based fMRI paradigms or simple motor tasks that 
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generate reliable activations will be necessary to understand the behavior and potential 

utility of this method.
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Fig. 1: 
Schematic of the elastic hyperalignment approach. Top row: the original time course color-

coded by the fMRI conditions that included happy, fearful, and neutral. Row 2, 3: the 

unaligned and the aligned time courses for those conditions. Row 4: the elastically aligned 

and the unaligned mean respectively. Row 5: within-condition aligned time course.
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Fig. 2: 
Examples of fMRI hyperalignment for time courses in two voxels from the amygdala and 

the putamen respectively.
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Fig. 3: 
Activated clusters in two different subjects for two different conditions (happy > neutral 

faces and fearful > neutral faces) for the original data (blue clusters) and for the warped data 

(orange clusters. The overlapping clusters between the two datasets are shown in green (e.g 

cluster b). Cluster locations: a) bilateral putamen; b) right putamen; c) left caudate; d) left 

caudate; e) bilateral amygdala.
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Fig. 4: 
Mean activation maps cluster thresholded for the original data (top row) and for the warped 

data (bottom row) for two different contrasts (happy faces > objects and fearful faces > 
objects). Cluster locations: a) cerebellar cortex; b) right amygdala; c) bilateral putamen; d) 

hippocampus; e) right caudate.
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Table 1:

Significantly activated clusters from FSL FEAT for 2 subjects for the Happy > Neutral and Fearful > Neutral 

contrasts compared for the original and warped data. NA denotes no activated clusters.

Data Type Cluster Max. Fig.
labels Voxels P Z.MAX ZMax.

coord. (MNI) Cope.Max Cope. Max.
coord. (MNI)

Cope.
Mean

Subject1

Happy > Neutral

Original NA NA NA NA NA NA NA NA NA

Warped
Left-Putamen a 141 1.66E-14 3.58 (60, 55, 41) 119 (60,55,41) 81.5

Right-Putamen a 18 0.0289 3.04 (32,63,39) 87.8 (33,63,40) 65.4

Fearful > Neutral

Original Right-Putamen b 205 0.0112 3.87 (33,64,38) 112 (33,66,30) 70.6

Warped
Right-Putamen b 235 3.65E-21 4.32 (33,64,38) 139 (33,66,30) 73.4

Left-Caudate c 41 2.66E-05 3.58 (49,70,40) 82.4 (49,70,40) 64.7

Subject2

Happy > Neutral
Original NA NA NA NA NA NA NA NA NA

Warped Left-Putamen d 92 8.15E-10 4.36 (57,67,33) 76.3 (57,67,33) 50

Fearful > Neutral

Original NA NA NA NA NA NA NA NA NA

Warped
Right-Amygdala e 96 3.76E-10 4.45 (34,61,29) 77.9 (36,61,29) 51

Left-Amygdala e 58 1.01E-06 4.86 (54,60,28) 92.5 (54,61,28) 58.7
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Table 2:

Paired t-test for comparison of number of clusters and total activated voxels between original and warped data 

for 4 contrasts for N = 10 subjects. Bonferroni corrected p-values are denoted by *.

test t-value df p-value 95% confidence int. mean of diferences

Happy > Neutral
no. clusters −4.9209 9 0.0064* [−6.8606–2.5394] −4.7

no. voxels −3.8818 9 0.0296* [−330.7957–87.20432] −209

Fearful > Neutral
no. clusters −3.3806 9 0.06495* [−6.6766–1.3234] −4

no. voxels −3.8602 9 0.0304* [−356.0610–92.93903] −224.5

Happy > Objects
no. clusters −5.262 9 0.004154* [−12.2972–4.9028] −8.6

no. voxels −4.6202 9 0.0104* [−1010.1137–346.0863] −678.1

Fearful > Objects
no. clusters −4.5843 9 0.0104* [−14.0385–4.7615] −9.4

no. voxels −3.8551 9 0.0312* [−662.9628–172.6372] −417.8
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