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Abstract

Cross subject functional studies of cerebral cortex require cortical registration that aligns 

functional brain regions. While cortical folding patterns are approximate indicators of the 

underlying cytoarchitecture, coregistration based on these features alone does not accurately align 

functional regions in cerebral cortex. This paper presents a method for cortical surface registration 

(rfDemons) based on resting fMRI (rfMRI) data that uses curvature-based anatomical registration 

as an initialization. In contrast to existing techniques that use connectivity-based features derived 

from rfMRI, the proposed method uses ‘synchronized’ resting rfMRI time series directly. The 

synchronization of rfMRI data is performed using the BrainSync transform which applies an 

orthogonal transform to the rfMRI time series to temporally align them across subjects. The 

rfDemons method was applied to rfMRI from the Human Connectome Project and evaluated using 

task fMRI data to explore the impact of cortical registration performed using resting fMRI data on 

functional alignment of the cerebral cortex.

1 Introduction

Group structural and functional studies of brain imaging data require registration across a 

population in order to draw inferences at finer scales. For studies involving the cerebral 

cortex it is often sufficient to perform this registration with respect to a 2D parameterization 

of the cortical surface. Most cortical surface registration methods are guided either by sulcal 

and gyral landmarks or curvature maps that reflect cortical folding [1,2]. The resulting 

registrations are appropriate for quantifying structural characteristics across populations, but 

there is ample evidence that regions of functional specialization are not accurately aligned 

across subjects using only anatomical landmarks [3]. Poor alignment can result in reduced 

statistical power when regions of functional activation do not accurately align. The common 

practice of spatial smoothing can overcome this problem to some degree, but limits our 

ability to localize and detect effects at finer scales. Functional regions can be better 

identified or aligned using a series of functional localizers as is common in fMRI studies of 

the visual system [4]. But this task-driven approach is limited by the number of regions that 

can be mapped in each subject using a discrete set of tasks. A more general approach uses 

data from subjects watching a movie to drive alignment of the entire cerebral cortex [5]. 

Another alternative is to use resting fMRI (rfMRI) data. While there is evidence for 

involvement of a large fraction of cerebral cortex in resting activity, using rfMRI for 

intersubject alignment presents a challenge because resting time-series cannot be directly 

compared across subjects as is the case for task fMRI.
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A recent series of papers have used the concept of hyperalignment to better align functional 

data across subjects [6]. The main idea is to use a linear transformation on the data from 

each subject to maximize the similarity of response profiles in a set of task data. This can be 

viewed as a method for spatial alignment that does not enforce any topological restrictions 

on the spatial mapping but instead uses linear combinations of the data from a local 

neighborhood to produce a spatial inter-subject correspondence. Here we explore an 

alternative to this approach in which we use a topologically-constrained nonrigid 

deformation of the cortical surfaces to perform inter-subject registration. An alternative 

recent method also used rfMRI data for this purpose [7]. In that case, z-score maps derived 

from ICA analysis of the functional activations were used to perform group-wise cortical 

surface registration. Spectral features derived from fMRI connectivity matrices have also 

been used for driving cortical registration [8,5].

An orthogonal transform termed BrainSync performs synchronization of timeseries across 

subjects at homologous locations in the brain [9]. The transform exploits the correlation 

structure common across subjects to perform the synchronization. When synchronized, 

rfMRI signals become approximately equal at homologous locations across subjects. The 

BrainSync transform is lossless and preserves correlation structures. As a result of 

synchronization we can directly compare time series across subjects. We can then use the 

aligned time series themselves as a feature to induce functional correspondence through 

nonrigid registration of the surfaces. This new approach to functional alignment is described 

here. Starting with the anatomically registered cortical surfaces, each cortical hemispheres is 

first mapped to a unit square flat map. The rfMRI data are then mapped to these squares and 

used as features to coregister across subjects using a modified demons algorithm. The 

distortion in the flat mapping is compensated for using the metric tensor determinant. The 

method is evaluated using resting and task data from the HCP project database.

2 Materials and Methods

As input, we assume structural and rfMRI images for each subject. The structural images are 

preprocessed to generate cortical surface representations and coregistered to a common atlas. 

The fMRI data are preprocessed using HCPs minimal processing pipeline [10]. They are 

then mapped to a common atlas using the mapping computed from the structural images. 

This preprocessing results in structurally coregistered V × T data matrices, one per subject, 

with V vertices in the cortical surface mesh and T time points. We refine this intersubject 

alignment using the rfMRI by first synchronizing their time-series with BrainSync, and then 

use these time-series as features in the alignment algorithm.

Flat Mapping and Metric Computation:

We generate a flat map of the cortical surface mesh of the atlas to which the fMRI data have 

been mapped for each subject. A harmonic map is computed on the unit square for each 

hemisphere such that the inter-hemispheric fissure that divides the two hemispheres is 

mapped to the boundary of the square and rest of the surface is mapped to its interior. The 

fMRI data is resampled onto a 256×256 regular grid on the square for each hemisphere 

using linear interpolation, resulting in a 256×256×T fMRI data representation. For fast 
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computation, the dimensionality of the dataset was reduced using PCA to 20 (chosen based 

on rank analysis of the data). The SVD of a reference subject’s V × T fMRI data was used to 

compute a set of 20 temporal basis functions onto which the subject’s synchronized fMRI 

data was projected to produce data of size 256 × 256 × 20. The 3D surface coordinates of the 

cortical mesh were also resampled to the regular grid and the metric tensor computed using 

finite differences (Fig. 1).

rfDemons: rfMRI-based cortical registration:

We start with BrainSync transformed rfMRI data for two individual datasets, with one 

designated as the ‘reference’ (or fixed) and the other as the ‘subject’ (or moving). Each is 

represented on the square atlas map as a 256 × 256 × 20 data matrix.

Let F(x(τ), t) denote the rfMRI data at the tth fMRI time point, at spatial location x in the 

square with x(τ) a set of deformation fields, parameterized by τ. We define F(x(τ), t) to be 

the rfMRI data of the subject when τ = 0 and the subject optimally matched to the reference 

when τ = 1, so that the subject data are gradually deformed to the reference as τ goes from 0 

to 1. Since the input rfMRI data is synchronized, we can use an optical flow formulation 

F(x(τ), t) = F(x, t) [11], i.e. the data are constant with respect to τ, and it is possible to match 

the data from subject to reference with an appropriate deformation map x(1). Taking the 

derivative of F with respect to τ, we get dF
dτ (x(τ), t) = ∇xF(x(τ), t) ⋅ v(x) where v(x) = dx(τ)

dτ  is 

the velocity of point x and ∇ is the spatial gradient. Our goal is to estimate the velocity v(x) 

at each iteration. The solution of this equation can be obtained in the least squares sense over 

the cortical surface by minimizing the cost

C(v) = ∫ ∫ ∇xF(x(τ), t) ⋅ v(x) − dF(x(τ), t)
dτ

2
det (g(x))dxdt (1)

over v, where g(x) indicates the surface metric tensor that encodes the distortion from the 

surface to the square map of the surface (Fig. 1). Since g(x) is slowly varying spatially 

compared to F, we can replace the images F by Fg = det (g(x))F. Eq. 1 shows that v cannot 

be uniquely defined, since we only observe the projection of v onto the gradient of F. We 

therefore select the minimum L2 norm solution for v. In continuous form using variational 

calculus we solve the system of equations: v(x)∫ ‖∇Fg(x(τ), t)‖2dt = ∫ dFg(x(τ), t)
dτ ∇Fg(x(τ), t)dt

to get

v(x) = ∫ dFg(x(τ), t)
dτ ∇Fg(x(τ), t)dt /∫ ∇Fg(x(τ), t) 2dt . (2)

Following [11–13], we add the demons force in the denominator for stability when the 

spatial gradient is small, to obtain:
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v(x) =
∫ dFg(x(τ), t)

dτ ∇Fg(x(τ), t)dt

∫ ∇Fg(x(τ), t) 2
dt + α2∫ dFg(x(τ), t)

dτ

2
dt

.

The corresponding discrete version is

vk(x) =
∑n = 1

N FT
g (x, n) − FM

g ∘ Tk(x) ⋅ ∇FT
g (x, n)

∑n ∇FT
g (x) 2 + α2∑n FT

g (x) − FM
g ∘ Tk(x) 2 , (3)

where n is the fMRI time point and ○ represents the composition operator. FT is the target 

image and FM the moving image, Tk(x) is the deformation at the kth iteration. The 

hyperparameter α controls for stability and, following [11], it can be shown that the 

displacement in Eq. 3 is bounded by 1/2α.

We will consider the symmetric version similar to that proposed in [14]:

vk(x) =
∑n FT

g (x, n) − FM
g ∘ Tk(x) ⋅ ∇FT

g (x, n)

∑n ∇FT
g (x, n) 2 + α2∑n FT

g (x, n) − FM
g ∘ Tk(x) 2

+
∑n FT

g (x, n) − FM
g ∘ Tk(x, n) ⋅ ∇FM

g (x, n)

∑n = 1
N ∇FM

g (x, n)
2

+ α2∑n = 1
N FT

g (x, n) − FM
g ∘ Tk(x) 2

that leads to an approximately inverse consistent deformation field. The steps of velocity 

estimation v(x), accumulation to the deformation field (Tk+1(x) ← Tk(x) + vk(x)), and 

warping the subject’s rfMRI data using this deformation T(x), are iterated until the norm of 

the velocity becomes small (e.g. 10−6th of a pixel). A flowchart for the rfDemons method is 

shown in Fig. 2. The execution time for the HCP datasets used below (32K per hemisphere 

cortical mesh density, 1200 time samples) is 3–4 min on a typical workstation (Pentium V, 

16GB RAM) with a minimum memory requirement of 4GB. The relatively light 

computational load of the algorithm is due to the fact that we perform the registration in the 

flat square space instead of on the sphere (as in spherical demons [8]). Since we compensate 

for the metric tensor corresponding to the flat map, we minimize regional biases in 

deformation fields that would otherwise result from metric distortion in the cortical surface 

maps.

3 Validation and Results

Data:

We used minimally preprocessed (ICA-FIX denoised) resting and task fMRI data from 40 

independent subjects (all right handed, age 26–30, 16 male and 24 female), which are 

publicly available from the Human Connectome Project (HCP) [15, 10]. We used data that 
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was acquired in two independent resting fMRI sessions (with same LR phase encoding) of 

15 minutes each (TR=720ms, TE=33.1ms, 2mm×2mm×2mm voxels) with the subjects 

asked to relax and fixate on a projected bright cross-hair on a dark background.

Intra-subject and Inter-subject Consistency:

For the first study, we coregistered two independent sessions of the same subject to a 

reference and checked for differences in the resulting deformation fields. If individual 

differences between cortical anatomy and functional specialization, as reflected in the rfMRI 

signal, are indeed driving the deformation then we would expect to see similar deformations 

for two sessions of the same subject. Similarly, we would expect to see differences in these 

deformation fields for different subjects. In other words, the inter-subject variance should be 

much larger than the intra-subject variance. To explore this issue, the deformations from the 

unit square were mapped back to the original surface with metric compensation to represent 

the true deformations on the cortical surface. Our expectations are confirmed anecdotally in 

Fig. 3 which shows the magnitudes of these deformations for two sessions each for two 

subjects. Within subject deformations are very similar, but they differ markedly across 

subjects. Cross-subject and cross-session differences were further quantified by computing 

the standard deviations of the deformation difference across sessions for each subject and 

averaged over subjects (Fig. 4(a)), and also the standard deviation of the deformation 

differences across subjects, averaged over sessions for all subjects (Fig. 4(b)). Again, the 

cross-subject difference is much larger than within subject cross-session differences. 

Somatomotor cortex shows low s.d. of deformation across subjects indicating that 

anatomical registration also aligns functionally in this region. This is expected since these 

areas are well defined by the pre and post central sulci. In contrast, the visual areas show 

much larger inter-subject variability. Again, this is consistent with the known variability of 

visual functional areas with respect to cortical anatomy, and the reason that functional 

localizers are frequently used in these areas. The within-subject cross-session maps indicates 

generally low variability with the exception of areas V1-V4. Performance in this area 

requires further investigation.

Task-data Mapping:

We also used task fMRI data to validate the results of rfDemons registration. We considered 

z-score maps for the emotion, gambling, language, motor, relational and social tasks in the 

HCP dataset [15]. In order to validate the cortical alignment obtained from the rfMRI data, 

we computed the mapping between the subject and reference rfMRI data by rfDemons and 

applied the resulting deformation map to the z-score maps from the task fMRIdata. Our 

underlying hypothesis is that rfMRI based registration will improve functional alignment of 

the cortical surface, which will result in turn in better alignment across subjects of the z-

score maps from the task data. To perform this comparison, for each task we computed the 

correlation between the z-score maps for each individual and the reference before and after 

functional alignment. Median and interquartile values are listed in Table 1. The before and 

after alignment correlations were compared using the Wilcoxon ranksum test (1-sided, 

paired) of the null hypothesis that the paired difference in the correlations has zero median. 

A significant increase in the correlation of z-score maps of reference and subjects was 

observed in all cases as shown in Table 1. This result indicates that the resting-fMRI based 
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rfDemons registration is able to improve inter-subject alignment of functional regions as 

evoked through a series of tasks. Additionally, we averaged the z-score maps across subjects 

before and after rfDemons alignment. Regions of significant activity lie in the tails of the 

distribution of these average z-score maps. The ability to more reliably detect this activation 

should therefore be reflected in a larger number of spatial locations that are outliers in this 

distribution. We computed the number of vertices on the cortical surface that exceeded a 

given z-score threshold, computed as a function of that threshold, in Fig. 5 for the language 

task (math vs. story contrast). As expected, we see a larger fraction of vertices exceeding the 

higher thresholds after rfDemons alignment.

4 Discussion and Conclusion

We have described a novel method (rfDemons) for functional alignment of the cerebral 

cortex using resting fMRI data. Our studies shows a high degree of within-subject 

consistency through most of the cortex except in the visual cortex. This latter observation 

may limit applicability in visual cortex, although the problem could be addressed using data 

from a combination of resting and visual stimulation. Between subject comparisons indicate 

a strong spatial dependence on the degree of variability across subjects. Again, this is most 

pronounced in visual cortex, and is smaller in regions, such as somatomotor cortex, that are 

known to be well defined by anatomical landmarks. Through application of the rfDemons 

registration results to task fMRI data we were able to explore whether functional registration 

improves the alignment of task-evoked activity. Through correlation studies we see small but 

significant improvement in the correlation of z-score maps between subjects after rfDemons 

alignment. This improvement is seen over several different contrasts representing multiple 

different functional tasks. We also saw an increase in the number of vertices in which the 

group averaged z-score exceeded a given threshold, indicating the potential for increased 

sensitivity in detecting task-related activity.
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Fig.1. 
(a) Mean curvature shown on the cortical surface and its flat harmonic map to the unit 

square; (b) the determinant of the metric tensor induced by the flat harmonic map is shown 

on the cortex and the flat map.
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Fig.2. 
Flowchart of rfDemons algorithm: the cortical surface is mapped to the unit square. The 

corresponding synchronized rfMRI datasets for subject and reference are then re-sampled on 

the square. The deformation field that registers the rfMRI data is computed using the metric-

compensated symmetrized demons algorithm. The deformation is then applied to the subject 

rfMRI data to map it back to the cortical surface mesh.

Joshi et al. Page 9

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2019 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig.3. 
Magnitude of the rfDemons deformation fields for two subjects, two sessions each. Note the 

cross-session consistency in the deformation fields for each subject.
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Fig.4. 
(a) Within-subject standard deviation maps for rfDemons; (b) between-subject standard 

deviation maps for rfDemons.
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Fig.5. 
Number of vertices in the cortical surface mesh above given threshold for the averaged z-

score maps over subjects, for the language task (math story) data before and after rfDemons 

registration.
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Table 1.

Correlations between subject and reference z-scores before (structural) and after (rfDemons) functional 

alignment. We list the median correlation over subjects and interquartile distance together with computed p-

values.

Task Contrast structural rfDemons p-value

Emotion faces_shapes 0.32(0.11) 0.34(0.10) 5.0E-8

Gambling punish_reward 0.03(0.04) 0.03(0.06) 0.01

Language math_story 0.48(0.09) 0.54(0.1) 2.7E-8

Motor t_avg 0.27(0.10) 0.29(0.10) 1.6E-6

Relational match_rel 0.22(0.10) 0.23(0.13) 3.2E-7

Social random_tom 0.24(0.13) 0.25(0.14) 5E-8
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