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Abstract

Cortical thickness analysis of brain magnetic resonance images is an important technique in 

neuroimaging research. There are two main computational paradigms, namely voxel-based and 

surface-based methods. Recently, a tetrahedron-based volumetric morphometry (TBVM) approach 

involving proper discretization methods was proposed. The multi-scale and physics-based 

geometric features generated through such methods may yield stronger statistical power. However, 

several challenges, such as the lack of well-defined thickness statistics and the difficulty in filling 

tetrahedrons into the thin and curvy cortex structure, impede the broad application of TBVM. In 

this paper, we present a universal cortical thickness morphometry analysis approach called 

tetrahedron-based Heat Flux Signature (tHFS) to address these challenges. We define the 

tetrahedron-based weak form heat equation and Laplace-Beltrami eigen decomposition and give 

an explicit FEM-based discretization formulation to compute the tHFS. We further show a tHFS 

metric space with which cortical morphometric distances can be directly visualized. Additionally, 

we optimize the cortical tetrahedral mesh generation pipeline and fill dense high-quality tetrahedra 

in the grey matters without sacrificing data integrity. Compared with existing cortical thickness 

analysis approaches, our experimental results of distinguishing among Alzheimer’s disease (AD), 

cognitively normal (CN) and mild cognitive impairment (MCI) subjects shows that tHFS yields a 

more accurate representation of cortical thickness morphometry. The tHFS metric experiment 

provides a more vivid visualization of tHFS’s power in separating different clinical groups.
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1 Introduction

Human cortical thickness analysis performed in vivo via magnetic resonance imaging (MRI) 

emerged quickly as a significant neuroimaging biomarker due to its close association with 

neurodegenerative and psychiatric diseases [3, 6, 14]. Cortical thickness morphometry 
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analysis consists in the accurate measurement of the quantative traits of cortical thickness 

and in the design of reliable morphological signatures from MRI in an operative way [8, 9, 

11].

Conventional voxel-based morphometry (VBM) methods [1, 2, 5] have been surpassed in 

recent years by surface-based morphometry (SBM) approaches [6, 9] because of the newly 

emerged shape modeling methods. Tetrahedron-based volumetric morphometry (TBVM) 

approach is a representative new method for cortical analyses [17, 18]. It deals with the 

measurement of brain structure and changes on tetrahedral mesh. When measuring the 

variations of bioinformation in the normal direction, SBM implements a localized node-to-

node registration with predefined constraints in the tangent space. The Euclidean distance 

between corresponding nodes is commonly used as a metric, as shown in Fig. 1(a). 

Compared with SBM, TBVM approach allows for more degrees of freedom, including both 

tangent space and normal space, hence making it an intuitive choice to model cortical 

thickness. However, the performance improvement and further application development of 

TBVM approaches are impeded by several existing challenges: (1) the lack of a well-

explained explicit morphometry signature formulation and of an accurate discretization 

formulation defined in the tetrahedron domain; (2) the difficulty in automatically generating 

high-quality tetrahedral meshes for the cortex.

In this paper, we propose a universal thickness morphometry analysis approach called 

tetrahedral-based Heat Flux Signature (tHFS) to address these challenges and increase 

statistical power for cortical thickness estimation and disease severity classification. We 

firstly define the weak form heat equation and the Laplace-Beltrami eigen decomposition on 

tetrahedral meshes. Then, two different discretization methods based on FEM are derived for 

computing pial-white point pairs and the LBO spectrum which are used for defining the 

tHFS. The general computational framework containing the major steps in the method is 

illustrated in Fig. 2. We further derive a tHFS distance as a metric for measuring disease 

severity in the form of a numerical distance between patients from the same or different 

disease groups. One important usage of tHFS distance is to visualize the disease severity by 

mapping the mutual distances to a 2D plane.

Our experiments focus on distinguishing different brain atrophy levels in Alzheimer’s 

disease. We selected 368 MRI images of initial-visit patients from Alzheimer’s Disease 

Neuroimaging Initiative (ADNI-2) [13] dataset. Experiments include cerebral cortex 

tetrahedral mesh generation, clinical group classification and a tHFS distance demonstration.

2 Methods

2.1 Cortical Tetrahedral Mesh Generation

Surfaces generated by FreeSurfer are usually error free, but genus-preserving down-

sampling and the process of combining pial and white surfaces always create self-

intersections. The folded gyri and sulci also make it harder to generate multi-layer 

tetrahedral meshes. Repeated smoothing is a commonly used method to remove geometric 

errors[17], but may cause data integrity loss. Our solution here is a minimally invasive 

surgery over intersection regions. A small neighborhood of the error nodes is selected and 
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moved along the inward normal direction by a small step size. This process is repeated until 

the intersection is removed. Local smoothing is applied to the selected nodes. Hence, all 

modified nodes are marked to differentiate them from the unaltered nodes. This protocol 

sacrifices a small number of vertices to maintain the integrity of the whole mesh. The 

tetrahedral mesh is then generated by Tetgen [16].

2.2 Tetrahedron-based Heat Equation

The heat flux of vertex m in direction s per unit time is defined by the weighted temperature 

difference between m and the neighboring vertex along f s
m = − k ∂T

∂s . On tetrahedral 

meshes, the discretized heat flux is defined by the weighted Newton’s law of cooling: −k(Ts 

− Tm). Here k is heat conductivity. The minus sign refers to the inversed direction of the 

temperature gradient. Therefore, the heat flux computation is converted to heat equation 

problem.

Assuming that the temperature distribution on boundary surfaces is prescribed and static, we 

apply Galerkin’s method to convert the continuous heat equation problem to a discrete weak 

form problem with Dirichlet boundary conditions [4, 15]. We define the discrete harmonic 

energy matrix S as [18]:

S =
1
12 ∑v j ⊆ N(vi)

∑Tl ⊆ N(vi, v j)
L(i, j)cotθl

(i, j), i f v j ⊆ N(vi)

0, otherwise
(1)

where N(vi) is the set of the neighboring vertices of vertex vi; N(vi, vk) is the set of the 

neighboring tetrahedrons of edge(vi,vk); L(i,j) is the length of the opposite edge to edge(vi,vj) 

in tetrahedron Tl; and θl
i, j is the dihedral angle of edge(vi,vj) in tetrahedron Tl. In Fig. 3.(a), 

the neighboring vertices of 1 are represented as green points. Neighboring edges of 1 are in 

yellow. Two tetrahedrons shared by (1,2) are in green. Fig. 3(b) shows the dihedral angle and 

opposite edge of (1,2). Extracting two matrices from S: (1) Wii: a square matrix indicates 

inner nodes i; (2)Wib: a matrix with inner node i and boundary node b. Under the Dirichlet 

boundary condition, the interior temperature distribution T is: LtetT = T∂Ω, Ltet = diag(ΣiWii) 

+ diag(ΣiWib) − Wii. T∂Ω is the temperature on the boundary. Ltet is the tetrahedron-based 

Laplace-Beltrami operator (LBO).

A heat flow trajectory is defined as the path from one point on the pial surface to one point 

on white surface in the direction of the temperature’s gradient descent. It is illustrated as the 

top figure of Fig. 2(d). Our method is to search for the biggest temperature flux among all 

neighboring vertices and then move to that vertex as a new starting point. We repeat this 

process until the new target point falls on the white surface. All the passing edges are the 

heat trajectory. Here, our definition of cortical thickness is the sum of all the passing edges. 

Starting vertex x and destination vertex y form a pial-white vertices pair(x, y), which is used 

in defining the tHFS.
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2.3 Tetrahedron-based Laplace-Beltrami Eigen Decomposition

The Eigencompanion Method is employed to define the tHFS. The eigen pairs are computed 

by solving the tetrahedron-based Laplace-Beltrami eigen problem over the tetrahedral mesh: 

Ltetϕ = λϕ. Here, the tetrahedron-based LBO is defined under Neumann boundary 

conditions: Ltet = B−1(D − S), where S is defined in Equ. 1 and D is a diagonal matrix 

defined as the sum of each row in S. The heat capacity matrix B is:

Bi, j =

∑Tl ⊆ N(vi)
∣ Vl ∣

10 + ∑k ⊆ N(vi)
∑Tl ⊆ N(vi, vk)

∣ Vl ∣
20 , i f i = j

∑Tl ⊆ N(vi, v j)
∣ Vl ∣

20 , i f v j ⊆ N(vi)

0, otherwise

(2)

where N(vi) is the set of neighboring tetrahedrons of vertex i; N(vi, vk) is the set of 

neighboring tetrahedrons of edge(i,k); Vl is tetrahedron l’s volume. Solving the eigen 

problem of Ltet, we get eigenvalue and eigenvector pairs (λn, ϕn).

2.4 Heat Flux Signature

With the pial-white vertices pairs (x, y) calculated in Section 2.2 and the eigen pairs (λn, 
ϕn), the tHFS is defined as:

tHFS(x, y ∣ t0 + δt) = ∑
n

N ϕn(x)′ϕn(y)

e
λn(t0 + δt) (3)

where t0 is an initial constant, usually 0 or 1 and δt is step size defined by weighted 

maximum eigenvalue: δt = 2
0.8 × λmax

.

tHFS is a matrix with the number of vertices as the horizontal dimension and the number of 

steps as the vertical dimension. If considering the variable δt is a time interval and t0 is the 

initial time, HFS is a time series matrix. The ith row stands for the heat flux changes along 

(x, y)i. Stochastic Coordinate Coding(SCC) [12] is then used to organize the features for 

binary classification.

2.5 tHFS distance

Theoretically, an effective disease severity quantitation method is also convertible to a metric 

which provides not only a numerical way in describing the relationships of groups and 

subjects but also a visualization tool via Multidimensional Scaling (MDS). Here we 

introduce a metric derived from tHFS, called tHFS distance. The tHFS distance aims at 

measuring static tetrahedron-based cortical thickness morphometry relationships. As a static 

metric, setting δt = 0 and t = 1, the tHFS distance between two samples M and M′ is:
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dn(M, M∼) ≈ inf
γ ∈ Γ(n) max 1

Volume(M) ∑
i = 1

N
d(vi, M∼)Ai,

1
Volume(M∼)

∑
i = 1

N
d(M, v∼i)A

∼
i (4)

where N and N′ are numbers of vertices in temperature pairs; The eigen spaces of different 

meshes may be matched by adjusting signs of eigenvectors [10], so we defined γ as the sign 

of eigenvectors; Γ(n) is the set of signs. Ai and Ãi are the weighted volume sums of 

surrounding tetrahedrons: A = 1
4 ∑vi ∈ Tl

volume(T l). The vertex to mesh distances d(x, M̃) and 

d(M, y) are defined as:

d(x, M∼) = min
y ∈ M∼

tHFSM
Φ(n)(x) − tHFS

M∼
Φ∼γ(n)

(y)
2
, ∀x ∈ M (5)

d(M, y) = min
x ∈ M

tHFSM
Φ(n)(x) − tHFS

M∼
Φ∼γ(n)

(y)
2
, ∀y ∈ M∼ (6)

where Φ̃γ(n) is an othogonal basis adjusted by Γ(n). Equ.4 provides an optimized Γ(n) so 

that two orthogonal basses are closest. We proved that tHFS distance has the properties of a 

metric.

3 Experimental Results

In experiments, we focus on human brain atrophy severity analysis of Alzheimer’s disease 

patients. Our data contains 94 Alzheimer’s disease (AD) patients, 137 normal controls (CN) 

and 137 mild cognitive impairment (MCI) patients from the Alzheimer’s Disease 

Neuroimaging Initiative phase 2 (ADNI-2) baseline initial-visit dataset. All subjects are 

scanned using a 3T scanner. The acquired MRI images are then pre-processed by 

FreeSurfer4 to segment pial and white matter surfaces. The pial and white surfaces are 

downsampled to 120000 faces for the mesh generation. As a universal tool, tHFS can be 

used to analysis other abnormalities in diseases such as schizophrenia.

3.1 Cortical Tetrahedral Mesh Generation

Fig. 1(b), Fig. 2(b,c) illustrate the generated tetrahedral mesh. 96.88% subjects yielded high 

quality cortical tetrahedral mesh after the first iteration, and 100% after the second iteration. 

Each mesh contains 5.6–5.8 million tetrahedrons and more than 1.5 million vertices.

4https://surfer.nmr.mgh.harvard.edu/
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3.2 Cortex Thickness

Although cortical thickness measurement is not our main purpose, we illustrate one 

thickness map result at the bottom of Fig. 1(d). The color is rendered on the pial surface by 

scaling with the thickness.

3.3 Disease Severity Classification

In experiment settings, 10-fold cross validation is used for avoiding data selection bias. 

AdaBoost [7] is the classifier. 10-steps tHFS with 5 and 10 pairs of smallest eigenfunctions 

(removing the first smallest one) are used when comparing with the lumped volumetric 

method. 5 pairs are used to compare with FreeSurfer thickness method.

For comparisons, we select the surface-based thickness morphometry method used in 

FreeSurfer [6] and a lumped tetrahedron-based method [17]. In [17], the lumped discrete 

volumetric LBO is defined as: Lp = D−1S, where D = diag(d1, …, dn). dn is the weighted 

volume sum of all the tetrahedrons sharing vertex i: dn =ΣTl∈N(i) Volume(Tl)/4.

The classification results are shown in Table 1. Three performance measures, Accuracy 

(AC), Sensitivity (SEN) and Specificity (SPE), were evaluated. Considering that the number 

of eigen pairs may affect the results, here we demonstrate the results of 5 eigen pairs and 10 

eigen pairs. The accuracy performance converges at about 10 pairs, so the results of 10 pairs 

are taken as the general selection. As a thickness morphometry signature, tHFS boosts 

statistical power to distinguish disease severity compared with pure thickness information. 

This is due to the more precise discretization and better mesh quality.

3.4 tHFS distance

In this experiment, we randomly selected 2 AD patients, 4 CN patients and 4 MCI patients 

to calculate the mutual tHFS distances. The result is a distance matrix. In Fig. 4(1) we 

demonstrate a mutual distance example of 2 AD, 2 CN and 2 MCI. We calculate the MDS of 

the mutual distance matrix with its covariance matrix. The spectrum of the covariance 

matrices shows the feasibility to find a good configuration of distances using largest two 

eigenvalues, as the others converge to zero quickly. The MDS map is shown in Fig. 4. 

Clearly we see that three groups are centered in different regions, while subjects within the 

same group have much smaller distances than subjects across different groups. The average 

group distance is defined by averaging the distances of subjects belonging to the same or 

different groups. The average distance chart is illustrated in Fig. 5. Both the MDS map and 

average group distance chart indicate that tHFS is powerful in distinguishing different 

disease severity groups.

Here we have developed an accurate, robust TBVM approach for cortical thickness analysis. 

Besides validating it with other disease datasets, we will continue refining it to advance 

computational anatomy research.

Acknowledgments

The research is supported in part by NIH (R21AG049216, RF1AG051710, R01EB025032), NSF (IIS-1421165) and 
NSFC(61772253).

Fan et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Ashburner J, Friston KJ. Voxel-based morphometry the methods. Neuroimage. 2000; 11(6):805–
821. [PubMed: 10860804] 

2. Baron J, Chetelat G, Desgranges B, Perchey G, Landeau B, De La Sayette V, Eustache F. In vivo 
mapping of gray matter loss with voxel-based morphometry in mild alzheimer’s disease. 
Neuroimage. 2001; 14(2):298–309. [PubMed: 11467904] 

3. Das SR, Avants BB, Grossman M, Gee JC. Registration based cortical thickness measurement. 
Neuroimage. 2009; 45(3):867–879. [PubMed: 19150502] 

4. Delkhosh M, Delkhosh M, Jamali M. Greens function and its applications. J Basic Appl Sci Res. 
2012; 2(9):8865–76.

5. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey 
matter induced by training. Nature. 2004; 427(6972):311. [PubMed: 14737157] 

6. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance 
images. Proceedings of the National Academy of Sciences. 2000; 97(20):11050–11055.

7. Freund Y, Schapire R, Abe N. A short introduction to boosting. Journal-Japanese Society For 
Artificial Intelligence. 1999; 14(771–780):1612.

8. Hutton C, Draganski B, Ashburner J, Weiskopf N. A comparison between voxel-based cortical 
thickness and voxel-based morphometry in normal aging. Neuroimage. 2009; 48(2):371–380. 
[PubMed: 19559801] 

9. Jones SE, Buchbinder BR, Aharon I. Three-dimensional mapping of cortical thickness using 
laplace’s equation. Human brain mapping. 2000; 11(1):12–32. [PubMed: 10997850] 

10. Lai R, Shi Y, Scheibel K, Fears S, Woods R, Toga AW, Chan TF. Metric-induced optimal 
embedding for intrinsic 3d shape analysis. Conf Computer Vision and Pattern Recognition 
(CVPR), 2010, IEEE; IEEE; 2010. 2871–2878. 

11. Lerch JP, Evans AC. Cortical thickness analysis examined through power analysis and a population 
simulation. Neuroimage. 2005; 24(1):163–173. [PubMed: 15588607] 

12. Liu J, Ji S, Ye J, et al. Slep: Sparse learning with efficient projections. Arizona State University. 
2009; 6(491):7.

13. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W, Trojanowski JQ, Toga AW, 
Beckett L. The alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics. 2005; 15(4):
869–877. [PubMed: 16443497] 

14. Schwarz CG, Gunter JL, Wiste HJ, Przybelski SA, Weigand SD, Ward CP, Senjem ML, Vemuri P, 
Murray ME, Dickson DW, et al. A large-scale comparison of cortical thickness and volume 
methods for measuring alzheimer’s disease severity. NeuroImage: Clinical. 2016; 11:802–812. 
[PubMed: 28050342] 

15. Shi Y, Chan CH. Multilevel green’s function interpolation method for analysis of 3-d frequency 
selective structures using volume/surface integral equation. JOSA A. 2010; 27(2):308–318. 
[PubMed: 20126243] 

16. Si H. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions on 
Mathematical Software (TOMS). 2015; 41(2):11.

17. Wang G, Wang Y. Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey 
Matter Morphology Signatures. Neuroimage. Feb.2017 147:360–380. [PubMed: 28033566] 

18. Wang Y, Gu X, Yau ST, et al. Volumetric harmonic map. Communications in Information & 
Systems. 2003; 3(3):191–202.

Fan et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Different modeling methods in mophometry analysis. (a)Surface-based mophometry 

approach. (b)Tetrahedron-based mophometry approach.

Fan et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
General computation framework. (a)Left: MRI images. Right: pial and white surfaces. (b) 

Left: cortical tetrahedral mesh. Right: cut plane of tetrahedral mesh. (c) Left: one slice cut 

from the red band part of (b). Middle: zooming in the part of the entorhinal cortex marked 

by the red circle on the left. Right: a further zoomed-in picture and its detailed inner 

structure. (d) Top: temperature distribution and heat flux trajectory. Bottom: The cortical 

thickness map overlaid in color scale.
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Fig. 3. 
Numerical Discretization.(a) Neighboring relationship of vertex 1. (b) Dihedral angle θ and 

opposite edge of edge(1,2).
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Fig. 4. 
tHFS distances.(1) A mutual distance example.(2) MDS map.
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Fig. 5. 
Average tHFS distance.
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