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Abstract. We propose a novel Coupled Hidden Markov Model to detect
epileptic seizures in multichannel electroencephalography (EEG) data.
Our model defines a network of seizure propagation paths to capture
both the temporal and spatial evolution of epileptic activity. To address
the intractability introduced by the coupled interactions, we derive a
variational inference procedure to efficiently infer the seizure evolution
from spectral patterns in the EEG data. We validate our model on EEG
aquired under clinical conditions in the Epilepsy Monitoring Unit of the
Johns Hopkins Hospital. Using 5-fold cross validation, we demonstrate
that our model outperforms three baseline approaches which rely on a
classical detection framework. Our model also demonstrates the potential
to localize seizure onset zones in focal epilepsy.

1 Introduction

Epilepsy is a heterogenous neurological disorder characterized by recurring and
unprovoked seizures [I]. It is estimated that 20-40% of epilepsy patients are med-
ically refractory and do not respond to drug therapy. Alternative therapies for
these patients crucially depend on being able to detect epileptic activity in the
brain. The most common modality used for seizure detection is multichannel
electroencephalography (EEG) acquired on the scalp. The clinical standard for
seizure detection involves visual inspection of the EEG data, which is time con-
suming and requires extensive training. In this work, we develop an automated
seizure detection procedure for clinically acquired multichannel EEG recordings.

There is a vast body of literature on epileptic seizure detection from a vari-
ety of viewpoints. The nonlinearity of EEG signals has inspired the application
of techniques from chaos theory such as approximate entropy and Lyapunov
exponents as in [2] and [3], respectively. Alternatively, wavelet and other time-
frequency based features seek to capture the non-stationarity of the EEG signal
as in []. These features are fed into standard classification algorithms to de-
tect seizure activity. A fundamental limitation of the methods in [2] and [3] is
that they are trained on a single channel of EEG data and fail to generalize in
practice. Multichannel strategies such as those in [4J5I6l7] rely heavily on prior
seizure recordings to train patient specific detectors, which are often unavailable.

Unlike prior work, our approach explicitly models the spatial dynamics of
a seizure through the brain over time. We build on existing work in Hidden



Markov Models (HMMs) [7], adopting a Coupled HMM (CHMM) [8] to model
interchannel dependencies. Specifically, the likelihood that an EEG channel will
transition into a seizure state will increase if neighboring channels are in a seizure
state. This coupling renders exact inference intractable. Therefore we develop a
variational Expectation Maximization (EM) algorithm for our framework.

We evaluate our algorithm using 90 scalp EEG recordings from 15 epilepsy
patients acquired in the Epilepsy Monitoring Unit (EMU) of the Johns Hop-
kins Hospital. These recordings contain up to 10 minutes of baseline activity
before and after a seizure and have not been screened for artifacts. We compare
our CHMM to classifiers evaluated on a framewise and channelwise basis. Our
algorithm outperforms these baselines and demonstrates efficacy in classifying
seizure intervals. Our algorithm provides localization information that could be
useful for determining the seizure onset location in cases of focal epilepsy.

2 Generative Model of Seizure Propagation

We adopt a Bayesian framework for seizure detection. The latent variables X
denote the seizure or non-seizure states. Y corresponds to observed data fea-
ture vectors computed from EEG channels as shown in Fig. [1| (a). The ran-
dom variable X! denotes the latent state of EEG channel i at time ¢t. We as-
sume three possible states: pre-seizure baseline (X! = 0), seizure propagation
(X! = 1), and post-seizure baseline (X! = 2). The corresponding observed “emis-
sion” feature vectors Y} are continuous statistics computed from time window ¢
of the EEG channel i. For convenience, we also define the ensemble variables
Xt 2 Xt ..., X%]" where N is the number of electrodes. Given the EEG ob-
servations, our goal is to infer the latent seizure state for each chain at all times.

2.1 Model Formulation and Inference

Fig. 1] (b) shows the coupling between electrodes of the 10/20 international
system [9]. We define the aunts au(-) of a given node as the set of electrodes
connected to it in Fig. [1] (b). The joint distribution of X and Y factorizes into
transition priors that depend on both a channel’s own previous state and those of
its aunts P(X | Xau (Ui ), and emission likelihoods P(Y; | X}) as in Eq. . For
simplicity we assume that all recordings begin in a non-seizure state (X? = 0V1).
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Note that the observed emissions are conditionally independent given the latent
states. Below, we detail the model formulation and inference algorithm.

Coupled State Transitions. The distribution over state vectors X* forms
a first order Markov chain. This distribution further factorizes into products
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Fig. 1. (a) Graphical model depicting a three chain CHMM. Observed nodes are shaded
gray, while latent nodes are shown in white. (b) EEG channels in the 10/20 interna-
tional system [9], cross hemispheric (red) and neighboring (blue) channel connections.
A seizure propagates from the red, to the orange, and finally yellow shaded electrodes.

of transition distributions of individual chains P(X! | X'~1) = T[X, P(X! |
XZ;(li) Ui)' We encode these chainwise transition probabilities using time inho-
mogenous transition matrices as shown in Eq. . This structure ensures each
channel begins in a non-seizure baseline state, transitions into an active seizure

state, and transitions into a post-seizure state.
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The transition matrix A! is governed by neighboring and contralateral EEG
channels to capture the main modes of seizure propagation, as shown in Fig. [1{(b).
Let n! be the number of aunts in the seizure state in the previous timestep. We
model the transition probabilities into and out of the seizure state via logistic
regression functions of n! as shown in Eq. . Parameters {pg, ¢} control the
base onset and offset rates while {p1, ¢1} control the effects of a channel’s aunts.
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Emission Likelihood. We use a Gaussian Mixture Model (GMM) to describe
the emissions Y} of each chain. Let C} be the mixture from which Y;' was gener-
ated. Let ﬂfj be the prior probability of mixture component j when X! = k for
k =0,1,2. The joint distribution over Y;! and C! can be expressed as follows

P(V},Cl=j| Xt =k) = P(Y} | C! = )P(Ct = j | X! = k)
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Effectively, the emission distributions for all observed variables share the same
mean parameters fi;; and covariance parameters ;;, but use different mixture
weights based on the latent seizure state k. We tie weights for both pre- and
post-seizure states, i.e. w?j = w2 for all channels i and mixture components j.

The data likelihood P(Y;' | X}) can be computed by marginalizing over j.

Approximate Inference Using Variational EM. Exact inference for the
CHMM is intractable due to the coupled state transitions. Therefore we develop
a structured variational algorithm [I0], in which we approximate the posterior
distribution over X as a set of IV independent HMM chains:
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As seen in Eq. (| . each approximating chain includes a normalizing constant
Zo,, a transition term T} (X? | X!™'), and an emission term E?(X?).

The transition distribution Tf(Xf | X!71) is encoded by a state transition
matrix A? which mimics the structure of Eq. . Here §! and h! are variational
transition parameters analagous to the original transition parameters g¢ and hf.
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In contrast to Eq. (6), the emission distribution E!(X!) weighs the contribution
of the observed data Y’ through variational parameters I, and I%;. Thus Ef (X! =
0,2) =1, and EL(X!=1) =1!,.

We learn variational parameters for each chain by minimizing the free energy
of the approximation. We perform this minimization by decoupling the free en-
ergy into expectations over a single channel and expectations over the remaining
channels. The index “—i” in Eq. ( . denotes the set of channels excluding i.

FE = —Bq[logp(X, Y)] + Eq [log Q(X)]
= —Eq, [Eq_, logp(X:,Y; | X_i, Y_)]] + Eq, log Qi(X:)]  (7)
— Eq_, [logp(X—;, Y_i)] + Eq_, [log Q—i(X_;)]
Notice that the last line of Eq. does not depend on the parameters of chain 4,
allowing a natural fixed point iteration over the parameters of a single chain

while holding all other chains constant. This minimization fixes the variational
parameters [ equal to the GMM likelihood of the observed data:

ho=p(Y! | X[ =02), H=p'|Xi=1). (®)

Similarly the updates for the variational transition parameters form logistic re-
gressions where the activations are the expected value of the original activations.
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Once the variational parameters have been computed, the approximating
distribution takes the form of an HMM where the [ parameters capture the
likelihood of the data under each latent state. We can use the forward-backward
algorithm [10] to compute the expected latent states Fg[X!], the expected state
transitions, and the expected number of aunts in the seizure state Eg[n!].

Learning the Model Parameters. We use the expected values of the latent
states and mixture components to update the transition parameters {p;, ®;}
and the emission parameters {p;;, £i;, 7} }. Let 7/(j, k) be the expectation that
channel ¢ at time ¢ is in state & with mixture j, we can update the emission
parameters according to the soft counts of the occurrence of each mixture.
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The update for the transition parameters {p;, ¢; } takes the form of a weighted
logistic regression. We regress the expected 7! onto the expected transitions for
each chain and use Newton’s method to find the optimal transition parameters.

Iij (10)

Implementation Details. We initialize our model by training the GMM emis-
sion distributions based on the expert annotations of seizure intervals. 3 emission
mixtures resulted in a reasonable compromise between sensitivity and specificity.
Transition parameters pg, p1, ¢o, and ¢; were initialized to -7, 2, -3, and 0, re-
spectively. This corresponds to expected seizures every 13 minutes lasting 15
seconds, channels turning on with a 7 fold increase per aunt node, and no cross
channel influence for offset. Our EM proceedure is performed in an unsuper-
vised fashion without further use of the labels. Model parameters are updated
during the M-step of the EM algorithm. During inference, channels are updated
sequentially until the scaled difference in F& converges to less than 1074

2.2 Baseline Comparison

We compare our model to three alternative classification schemes. The first ap-
proach is to train a logistic regression function to distinguish between baseline
and seizure intervals based on a linear combination of the EEG features. The
second approach uses kernel support vector machines (SVMs) to learn a possibly
nonlinear decision boundary in the EEG feature space that maximally separates
the baseline and seizure conditions. Here we rely on a polynomial kernel. SVM
classifiers have been used extensively for seizure detection [2I5/6]. Finally we con-
sider a GMM hypothesis testing scenario. This method trains GMMs for seizure
and non-seizure states and classifies based on the ratio of the likelihoods under
each GMM, roughly equating to our model with no transition prior.



3 Experimental Results

3.1 Data and Preprocessing

Our EEG data was recorded as part of routine clinical evaluation in the EMU of
the Johns Hopkins Hospital. Our dataset consists of 90 seizures recordings from
15 patients with as much as 10 minutes of baseline before and after the seizure.
Recordings were sampled at 200 Hz. We rely on expert clinical annotations
denoting the seizure onset and offset to validate the performance of each method.

For preprocessing, each EEG channel was bandpass filtered through sequen-
tial application of fourth order Butterworth high and low pass filters at 1.6 Hz
and 50 Hz respectively. This filtering mirrored clinical preprocessing practice for
removing DC trends and high frequency components with no clinical relevance.
In addition, a second order notch filter with @ = 20 was applied at 60 Hz to the
EEG recordings to remove any remaining effect of the power supply.

We considered two emission features for analysis computed from channels in
common reference: the sum of spectral coefficients in brain wave frequency bands
and the log line length. Features were computed on windows of 1 s with 250 ms
overlap. For spectral features, a short time Fourier transform was taken after the
application of a Tukey window with shape parameter 0.25. The magnitudes of the
STFT coefficients corresponding to frequencies in the theta (1-4 Hz), delta (4-8
Hz), alpha (8-13 Hz), and beta (13-30 Hz) bands were summed and the logarithm
was taken, resulting in a length four feature vector. The log line length was com-
puted as the logarithm of the sum of the absolute difference between successive

samples i.e. given a signal s of length T', log L = log (23:01 s(i+1)— s(z)\)

3.2 Seizure Detection Performance

We use a 5 fold cross validation strategy for evaluation. Four folds were used to
train each model and detection was evaluated on the held-out fold. Each record-
ing was randomly assigned to a fold independently of patient. For our model, the
training phase was used to learn the emission and transition parameters. Table
summarizes the performance for each classifier based on the average accuracy of
the testing fold. The sensitivity (TPR) and specificity (TNR) denote the predic-
tion accuracy for seizure and non-seizure frames, respectively, computed across
all channels. For the probabilistic classifiers (i.e. logistic regression, GMM, and
CHMM), these rates are weighted by the posterior confidence of the classifier.

The transition prior allows our CHMM to place more confidence in contiguous
regions exhibiting seizure-like activity. Fig. 2| (a) shows an example of our classi-
fier correctly classifying the majority of the seizure across all channels. However,
this confidence comes with a reduction in specificity, as the classifier tends to
associate post-seizure spectral artifacts with seizure as shown in Fig. [2[ (b). In
future work we will investigate feature selection methods to combat this issue.
Fig. [2| (¢) shows the evolution of a focal right temporal seizure, which indicates
our model’s potential to localize epileptic activity on the scalp. This localization
is highly relevant to clinical management of epilepsy.
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Fig. 2. Detection results for the CHMM. Top row: Estimated posterior probability
of the latent seizure state for two epilepsy patients. White corresponds to pre- and
post-seizure baseline while violet indicates seizure states. EEG channels corresponding
to 10/20 system [9] channel locations are on the y axis. The expert identified seizure
region is denoted by the dashed black lines. (a) shows the models ability to accurately
classify seizures across the whole brain and (b) shows the outward spread of a right
temporal lobe seizure. Bottom row: temporal evolution of the seizure depicted in (b).

Due to the heterogeneity of

seizure presentations across pa- Table 1. Results for each method.

tients, our baselines fail to per- Model TPR |TNR AUC
form well as shown in Fig. [3] GM.M. ) 21.91% (92.39% |0.784
The logistic regression and |Logistic Regression 18.07% [92.55%| 0.80
GMM correctly classify por- Kernel SVM 10.22% [90.27% | 0.53
tions of seizure intervals but |(CHMM 72.63%]|79.27% |0.839

lack consistency. The GMM exhibits more confidence in classifying seizures than
its probabilistic linear counterpart. The SVM performs poorly due to the in-
seperability of the EEG features in our noisy clinical dataset.

4 Conclusion

We have presented a novel method for epileptic seizure detection based on a
CHMM model. At a high level, we directly model seizure spreading by allowing
the state of neighboring and symmetric EEG channels to influence the transition
probabilities for a given channel. We have validated our approach on clinical EEG
data from 15 unique patients. Our model outperforms three baseline approaches
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Fig. 3. Detection results on Patient 1 for the three baseline methods. These algorithms
place much lower posterior confidence in seizure intervals than the CHMM.

which perform classification on a framewise basis. By incorporating a transition
prior that includes spatial and temporal contiguity to seizure regions we are able
to better classify seizure intervals within EEG recordings.
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