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Abstract

Automatic computation of cortical thickness is a critical step when investigating neuroanatomical 

population differences and changes associated with normal development and aging, as well as in 

neurodegenerative diseases including Alzheimer’s and Parkinson’s. Limited spatial resolution and 

partial volume effects, in which more than one tissue type is represented in each voxel, have a 

significant impact on the accuracy of thickness estimates, particularly if a hard intensity threshold 

is used to delineate cortical boundaries. We describe a novel method based on the anisotropic heat 

equation that explicitly accounts for the presence of partial tissue volumes to more accurately 

estimate cortical thickness. The anisotropic term uses gray matter fractions to incorporate partial 

tissue voxels into the thickness calculation, as demonstrated through simulations and experiments. 

We also show that the proposed method is robust to the effects of finite voxel resolution and 

blurring. In comparison to methods based on hard intensity thresholds, the heat equation based 

method yields results with in-vivo data that are more consistent with histological findings reported 

in the literature. We also performed a test-retest study across scanners that indicated improved 

consistency and robustness to scanner differences.

1 Introduction

Average cortical thickness can vary between 2 to 5 mm across a population of healthy 

subjects as well as across different brain regions in an individual [1]. Thickness of the 

human cerebral cortex is an important phenotypical feature and a biomarker for a range of 

neurological diseases and conditions, and brain development. To perform cortical thickness 

studies in a large population an automated approach to thickness measurement from T1-

weighted MRI scans is essential. Several approaches for computation of cortical thickness 

are based on first estimating inner gray/white and pial surfaces and then defining the cortical 

thicknesses based on the distance between the two [2, 3]. The Linked Distance method (LD) 

in BrainSuite uses distance between corresponding nodes in the two surfaces as a thickness 

measure. FreeSurfer’s cortical thickness [4] is defined as the average of the shortest distance 

between the two surfaces computed in both directions. Cortical Pattern Matching (CPM) [5] 

finds the shortest distance between the inner and pial surfaces using the Eikonal equation. 

On the other hand, voxel-based methods compute thickness based on line integrals [6, 7], the 

Laplace equation [8, 1, 9], or using image registration [10]. The accuracy of these 

HHS Public Access
Author manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2019 
February 05.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2018 September ; 11072: 549–556. doi:
10.1007/978-3-030-00931-1_63.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approaches is impacted when individual voxels are composed of a mixture of multiple tissue 

types leading to partial volume effects. The convoluted geometry of the cortex together with 

the point spread function associated with finite resolution makes partial volume effects 

inevitable. Despite this, most methods use crisp definitions of cortical boundaries for 

surface-based calculation. In some cases partial volume effects have been accounted for by 

modifying the cortical surface boundaries using Eulerian or Lagrangian PDEs [9], 

registration of inner and pial cortical surfaces [10], closest point distances between inner and 

pial cortical surfaces measured in both directions [11] and using an electric field model 

together with a topology preserving level set approach [12]. While these methods account 

for partial volume effects in defining inner and pial cortical surfaces, they do not explicit 

account for the actual partial volume fractions that lie between the two boundaries once they 

are defined.

Here we describe a new thickness calculation method that explicitly models partial volume 

effects by modifying the Laplace equation (LE) based method of Jones et al. [8]. Rather than 

using the isotropic LE, we instead use the anisotropic version in which the diffusion 

coefficient is varied spatially in proportion to the fraction of gray matter in each voxel. 

Further, we use a closed formed analytic expression for thickness that can be rapidly 

computed without the need for computation of streamlines as in [8]. We show in Section 2.2, 

using a 1D analogy, that this closed form expression is equivalent to the result obtained 

using the streamline method and that the thickness measurement is robust to blurring of the 

image with a unit-integral kernel. Finally, we present results that compare accuracy and 

robustness with alternative methods for cortical thickness calculation.

2 Materials and Methods

2.1 The Anisotropic Laplace Equation (ALE) Method

We assume that the brain image has been segmented using a partial classification scheme so 

that each voxel is assigned a fraction of gray matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF), with the constraint that the fractions sum to unity [13]. We model 

cortex as a thin sheet constrained by inner and outer cortical surfaces which are set to 

temperatures 0 and 1, respectively. We then model the propagation of heat between the two 

boundary layers of the cortex at equilibrium using the anisotropic form of Laplace’s 

equation. In our anisotropic model, the diffusion coefficient is assumed to be inversely 

proportional to the fraction of gray matter in each voxel so that pure white matter and CSF 

are modeled as perfect conductors. The temperature ϕ(v, t) as a function of spatial location v 
and time t is given by

∂ϕ(v, t)
∂t = div 1

f (v) ∇ϕ(v, t) , subject to ϕ(v, t) =
0 v ∈ ∂Ωinner

1 v ∈ ∂Ωpial
(1)

where Ω is the domain of the computation, bounded by the closed inner surface ∂Ωinner and 

the closed outer pial surface ∂Ωpial, and f(v) represents the gray matter fraction at location v. 

In this formulation it is important that all partial volume voxels that contain cortical gray 
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matter are included within the surfaces that bound Ω. The equilibrium solution ϕ∞ for the 

heat equation with anisotropic flow is given by the anisotropic Laplace equation: 

div 1
f (v) ∇ϕ∞(v) = 0, subject to the earlier boundary conditions. Using the calculus of 

variations, this equation can be reduced to the harmonic energy minimization problem:

ϕ∞(v) = arg min
ψ

∫
Ω

1
f (v) ∇ψ(v)

2
dΩ . (2)

Fig. 1 illustrates the color coded temperature distribution solution to the ALE in a 2D section 

of cortex in comparison to the solution of the isotropic LE and the LD method within Ω. We 

also show corresponding streamlines for the ALE using partial tissue fractions relative to 

those for the isotropic case. Note that the green streamlines in Fig 1 (d) extend into the white 

matter due to the non-zero gray matter fraction in this region. Integrals of ϕ∞(v) over these 

streamlines from inner to pial surface can be used to compute thickness [14]. We propose an 

alternative simple analytic expression by defining the cortical thickness T(v) at each point on 

the mid-cortical surface as:

T(v) = f (v) 1
∇ϕ∞(v) , where (v) ∈ ∂Ωmid . (3)

Here the mid-cortical surface (∂Ω)mid is defined as the level set: 

(∂Ω)mid = v ∈ Ω ϕ∞(v) = 1
2 . The analytic expression in Eq. 3 is shown in Section 2.2 to be 

equivalent to the path integral for the 1-dimensional solution to the ALE, not only at (∂Ω)mid 

but at all points with non-zero gray matter fraction. An intuitive explanation of why this 

approximation works is as follows. We impose boundary conditions of temperatures 0 and 1 

on the inner and pial surfaces, respectively. So for homogeneous gray matter the temperature 

gradient between them, ‖∇ϕ∞(v)‖, will be inversely proportion to thickness. Consequently, 

calculation of the reciprocal of the gradient at the midcortical surface should produce a good 

estimate of thickness. For the anisotropic case, we account for the increased flux in partial 

volume voxels that may lie on the mid-cortical surface by scaling by the gray matter fraction 

f(v).

2.2 Analysis using a 1D Model

To illustrate how ALE works, we use a 1D model. In this model we assume pure white 

matter is the region from x = −∞ to −L, the cortex (containing gray matter) from x = −L to 

L, and pure CSF from x = L to ∞. We assume an arbitrary gray matter fraction distribution 

f(x) on (−L,L). We then blur this distribution with a kernel g(x) with the property 

∫ −∞
∞ g(x) = 1. Following Eq. 3, we obtain the thickness

T = h(x)
dϕ∞(x)

dx

−1
at x:ϕ∞(x) = 0.5. (4)
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Here h(x) = f(x) for the unblurred case and h(x) = f(x) ⊛ g(x) for the blurred case, where ⊛ 
indicates convolution.

The 1D anisotropic heat equation is ∂ϕ(x, t)
∂t = ∂

∂x
1

f (x)
∂ϕ(x, t)

∂x  for the unblurred case, with 

boundary conditions ϕ(−L, t) = 0 and ϕ(L, t) = 1. Solving for ϕ∞(x) gives 

ϕ∞(x) = ∫
−L

x
f (y)dy/ ∫

−L

L
f (y)dy. Substituting this into Eq. 4 gives the correct value 

T = ∫ −L
L f (y)dy. It is somewhat surprising that the thickness value computed in this manner 

does not depend on the point x at which it is computed in Eq. 4, although for consistency of 

definition, we always compute it at the mid point between inner and outer boundary.

Now if we blur the gray matter fraction with a unit-integral kernel, solve the heat equation in 

steady state, and substitute in Eq. 4, the resulting solution is 

T = ∫ −∞
∞ ∫ −∞

∞ f (x)g(y − x)dx dy = ∫ −∞
∞ f (x) ∫ −∞

∞ g(y − x)dy dx = ∫ −L
L f (x)dx ∫ −∞

∞ g(y) dy

= ∫ −L
L f (x) dx

. In 

other words, the thickness calculations using ALE is unaffected by blurring with a 

sufficiently narrow kernel with unit integral, provided the blurred gray matter fraction of the 

cortex lies within the bounds defined by the inner and pial surfaces. It should be noted that 

in the 3D case, blurring of the image will lead to some smoothing of the computed thickness 

values along the surface, but this should not add bias to the thickness values.

3 Applications and Results

3.1 Average Cortical Thickness Study

We analyzed 3D structural brain MRI scans of 198 normal right handed subjects (76 male, 

122 female, age range: 18–26 years) from the 1000 Functional Connectomes Project http://

fcon_1000.projects.nitrc.org. Images were acquired using MPRAGE on a SIEMENS TRIO 

3T scanner: TR = 2530 ms, TE = 3.39 ms, slice thickness = 1.33 mm, flip angle = 7°, 

inversion time = 1100 ms, FOV = 256 mm × 256 mm, in-plane resolution = 256 × 192, 128 

slices. We used the BrainSuite software (http://brainsuite.org) [13] to define the partial 

volume fractions, as well as for extracting inner and pial cortical surfaces. All cortical 

surfaces were aligned to a common atlas space using BrainSuite in order to compute 

population based averages. Cortical thicknesses were computed as described in Section 2.1 

where we used a finite difference method to solve the anisotropic Laplace equation.

We processed each of the 198 subject images using three methods: LD, LE and ALE, and 

mapped these to the atlas to compute the point-wise average cortical thickness on the 

surface. A surface based Laplace-Beltrami isotropic smoothing [16] of ~10 mm fwhm was 

applied to the thickness estimates in the original subject surface to compensate for 

discretization and small misregistration errors. We used a robust mean estimate in which 

outliers (the 5% most extreme values) were first removed for each vertex on the surface. The 

maps of average cortical thickness estimated are shown in Fig. 2(b)-(d). For comparison we 

include in Fig. 2(a) a pseudo-colored version of Von Economo’s map of cortical thickness 

from [15] which is based on histological measurements. The patterns of thickness variation 
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across the cortex are similar for all three methods, however the range of values is quite 

different. The cortical thickness estimates found using ALE were more consistent with the 

Von Economo estimates in the parietal, occipital and temporal lobes, while they were 

different in the frontal lobe. It should be noted that the demographics of the subjects used in 

the histological study was different than the imaged population. Von Economo and Koskinas 

used brains of mentally healthy Caucasian subjects, 30–40 years of age [17] whereas the 

population in the data we used had an age range of 18–26 and were scanned in Beijing. This 

difference in the demographics, and especially the younger population in our study, may 

account for some of the increased thickness in the frontal lobe [18]. LE shows higher 

thickness than the Von Economo estimates everywhere on the cortex and LD showed even 

higher values. A similar comparison using FreeSurfer based thickness computation method 

was presented in [19] where it was shown that FreeSurfer also tended to overestimate the 

cortical thickness, although the pattern of cortical thickness was similar.

3.2 Test-Retest Reliability Study for Multiple Scanners

The purpose of this study was to analyze the effects of scanner differences on cortical 

thickness measurements in the same subject. The data for this study consisted of 5 normal 

subjects scanned on two different scanners. All the scans were acquired within three days at 

the University of Iowa. The first scan was acquired using a Siemens Trio 3T scanner: slice 

thickness 1 mm, TR 2530, TE 3.99 ms, inversion time 1100 ms, in-plane resolution 1 mm2 

and flip angle 10°. The second scan was acquired using a Siemens Avanto 1.5T scanner: 

slice thickness 1.5 mm, TR 26 ms, TE 7 ms, in-plane resolution 1.066 mm2 and flip angle 

30°. The BrainSuite surface extraction pipeline was executed for all scans. Thickness 

estimates were computed using the three methods and coregistered to the atlas brain using 

BrainSuite. In addition, we also executed the FreeSurfer pipeline (Version 5.3.0) on these 

subjects. Laplace-Beltrami surface based smoothing ~10 mm fwhm was applied and 

thickness differences were computed. The absolute value of thickness difference 

corresponding to 3T and 1.5T Siemens scanners, averaged over the five subjects was 

computed for all four methods as shown in Fig. 3. We also show histograms of these 

differences in Fig. 4. As with the simulation study, the ALE method shows the smallest 

absolute difference (mean 0.1575mm, sd 0.1034mm) between the 3T vs 1.5T scanners 

relative to LE (mean 0.1786mm, sd 0.1163mm) and LD (mean 0.2480mm, sd 0.1520mm), 

and FreeSurfer (mean 0.1679mm, sd 0.0821mm).

4 Discussion and Conclusion

Studies of cortical thickness usually compare differences in thickness in homologous areas 

between two groups, or changes in thickness over time during maturation, aging or disease 

progression. For this reason, consistency and robustness of thickness estimates is possibly as 

important as absolute accuracy. For this reason, we examined not only the average cortical 

thickness over a relatively larger population, but also the consistency of thickness estimates 

among subjects scanned in two different scanners. The study of 198 subjects produced 

average thicknesses with the ALE method that are more in line with those reported in the 

literature using histological studies than the alternative LE and LD methods. Differences in 

the frontal lobe using ALE compared to the values in the Von Economo atlas are consistent 
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with age differences in the two different populations studied and reported changes in 

thickness in early adulthood in frontal cortex [18].

The consistency study in Figs. 3 and 4 shows that there is a consistent bias in all methods in 

the thickness estimates computed from images from the 3T scanner versus those from the 

1.5T. However, the histograms of these differences confirm the reduced sensitivity to 

differences in resolution of the ALE method relative to FS, LE and LD.

In summary, results presented here indicate that ALE is capable of producing cortical 

thickness estimates that are largely consistent with those reported from histological 

measurements, and that these estimates are less sensitive to the effects of imaging in a 

different scanner for the limited range of conditions over which we have so far studied this 

method. Further evaluation is required, and as with all thickness estimation methods, though 

inter-scanner differences may be reduced, our results indicate that it is important that 

scanner-dependent effects be factored into any subsequent analysis.
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Fig.1. 
(a) Inner and pial surface boundaries overlaid on T1-weighted image; (b) cortical thickness 

computation based on linked distance overlaid on the gray matter fraction image (LD); (c) 

the solutions of the Isotropic Laplace Equation (LE) and (d) the proposed ALE method are 

shown as a color coded temperature distribution with green lines depicting the streamlines. 

The yellow arrow depicts an example region where the three methods differ significantly.
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Fig.2. 
(a) Histology based thickness map from Von Economo [15]; (b)-(d)Average cortical 

thickness maps of left hemisphere. Lateral (upper) and medial (lower) views from N=198 

adult subjects computed using: (b) Anisotropic Laplace Equation (ALE), (c) Isotropic 

Laplace Equation (LE), and (d) Linked Distance (LD).
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Fig.3. 
Effect of scanner differences on cortical thickness estimates for four methods: absolute 

thickness difference between estimates from the Siemens Trio 3T and Siemens Avanto 1.5T 

scanners, averaged over 5 subjects. ALE = Anisotropic Laplace Equation, LE = Laplace 

Equation, LD = Linked Distance, FS = FreeSurfer.
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Fig.4. 
Histogram of the average absolute differences between thickness measures for ALE, LE, LD 

and FS for 1.5T Siemens Avanto and 3T Siemens Trio scanners.
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