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Abstract. Different to semantic segmentation, instance segmentation
assigns unique labels to each individual instance of the same class. In this
work, we propose a novel recurrent fully convolutional network architec-
ture for tracking such instance segmentations over time. The network ar-
chitecture incorporates convolutional gated recurrent units (ConvGRU)
into a stacked hourglass network to utilize temporal video information.
Furthermore, we train the network with a novel embedding loss based
on cosine similarities, such that the network predicts unique embeddings
for every instance throughout videos. Afterwards, these embeddings are
clustered among subsequent video frames to create the final tracked in-
stance segmentations. We evaluate the recurrent hourglass network by
segmenting left ventricles in MR videos of the heart, where it outperforms
a network that does not incorporate video information. Furthermore, we
show applicability of the cosine embedding loss for segmenting leaf in-
stances on still images of plants. Finally, we evaluate the framework for
instance segmentation and tracking on six datasets of the ISBI celltrack-
ing challenge, where it shows state-of-the-art performance.

Keywords: cell, tracking, segmentation, instances, recurrent, video, em-
beddings

1 Introduction

Instance segmentation plays an important role in biomedical imaging tasks like
cell migration, but also in computer vision based tasks like scene understanding.
It is considerably more difficult than semantic segmentation (e.g., [10]), since
instance segmentation does not only assign class labels to pixels, but also dis-
tinguishes between instances within each class, e.g., each individual person on
an image from a surveillance camera is assigned a unique ID.

Mainly due to the high performance of the U-Net [12], semantic segmentation
has been successfully used as a first step in medical instance segmentation tasks,
e.g., cell tracking. However, for instances to be separated as connected compo-
nents during postprocessing, borders of instances have to be treated with special
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Fig. 1: Overview of our proposed framework showing input image, propagation of
cosine embeddings from frame ¢ to frame ¢t+1 (three randomly chosen embedding
dimensions as RGB channels), and resulting clustered instances.

care. In the computer vision community, many methods for instance segmenta-
tion have in common that they solely segment one instance at a time. In [4],
all instances are first detected and independently segmented, while in [I1], re-
current networks are used to memorize which instances were already segmented.
Segmenting solely one instance at a time can be problematic when hundreds of
instances are visible in the image, as often is the case with e.g., cell instance
segmentation. Recent methods are segmenting each instance simultaneously, by
predicting embeddings for all pixels at once [8I5]. These embeddings have sim-
ilar values within an instance, but differ among instances. In the task of cell
segmentation and tracking, temporal information is an important cue to es-
tablish coherence between frames, thus preserving instances throughout videos.
Despite improvements of instance segmentation using embeddings, to the best of
our knowledge, combining them with temporal information for tracking instance
segmentations has not been presented.

In this paper, we propose to use recurrent fully convolutional networks for
embedding-based instance segmentation and tracking. To memorize temporal
information, we integrate convolutional gated recurrent units (ConvGRU [2])
into a stacked hourglass network [9]. Furthermore, we use a novel embedding loss
based on cosine similarities, where we exploit the four color map theorem [1], by
requiring only neighboring instances to have different embeddings.

2 Instance Segmentation and Tracking

Figure [1] shows our proposed framework on a cell instance segmentation and
tracking example. To distinguish cell instances, they are represented as embed-
dings at different time points. By representing temporal sequences of embeddings
in a recurrent hourglass network, a predictor can be learnt from the data, which
allows tracking of embeddings also in the case of mitosis events. To finally gener-
ate instance segmentations, clustering of the predicted embeddings is performed.
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Fig.2: Overview of the recurrent stacked hourglass network with two hour-
glasses and three levels. Yellow bars: input; blue boxes: convolutions; red boxes:
ConvGRU; dashed black box: concatenation; green boxes: embeddings.

2.1 Recurrent Stacked Hourglass Network

We modify the stacked hourglass architecture [9] by integrating ConvGRU [2] to
propagate temporal information, as shown in Fig. 2} Differently from the original
stacked hourglass network, we use single convolution layers with 3 x 3 filters and
64 outputs for all blocks in the contracting and expanding paths, while we use
ConvGRU with 3 x 3 filters and 64 outputs in between paths. As proposed by [9],
we also stack two hourglasses in a row to improve network predictions. Therefore,
we concatenate the output of the first hourglass with the input image to use it
as input for the second hourglass. We apply the loss function on the outputs of
both hourglasses, while we only use the outputs of the second hourglass for the
clustering of embeddings.

2.2 Cosine Embedding Loss

We let the network predict a d-dimensional embedding vector e, € R? for each
pixel p of the image. To separate instances ¢ € I, firstly, embeddings of pixels
p € S® belonging to the same instance i need to be similar, and secondly,
embeddings of S need to be dissimilar to embeddings of pixels p € SU) of other
instances j # i. Here, we treat background as an independent instance. Following
from the four color map theorem [I], only neighboring instances need to have
different embeddings. Thus, we relax the need of dissimilarity between different
instances only to the neighboring ones, i.e., N = Uj S for all instances j # i
within pixel-wise distance ry to instance 7. This relaxation simplifies the problem
by assigning only a limited number of different embeddings to a possibly large
number of different instances.
We compare two embeddings with the cosine similarity
€] - €2
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which ranges from —1 to 1, while —1 indicates the vectors have the opposite, 0
orthogonal, and 1 the same direction. We define the cosine embedding loss as

1 1 X 1 .
= — _— 5(1) 0 2
L= i ZZ@I 1 SO Z cos(e',ep) | + NG| Z cos(e™,ey)? |, (2)
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where the mean embedding of instance i is defined as &) = @ Zpesm e,. By

minimizing L, the first term urges embeddings e, of pixels p € S to have the
same direction as the mean &%, which is the case when cos(é(i), ep) ~ 1, while
the second term pushes embeddings e, of pixels p € N to be orthogonal to the
mean € i.e., cos(€”), e,) ~ 0.

2.3 Clustering of Embeddings

To get the final segmentations from the predicted embeddings, individual groups
of embeddings that describe different instances need to be identified. As the num-
ber of instances is not known, we perform this grouping with the clustering al-
gorithm HDBSCAN [3] that estimates the number of clusters automatically. For
each dataset, two HDBSCAN parameters have to be adjusted: minimal points
Mpts and minimal cluster size mgigize. To simplify clustering and still be able
to detect splitting of instances, we cluster only overlapping pairs of consecutive
frames at a time. Since our embedding loss allows same embeddings for different
instances that are far apart, we use both image coordinates and value of the
embeddings as data points for the clustering algorithm. After identifying the
embedding clusters with HDBSCAN and filtering clusters that are smaller than
tsize, the final segmented instances for each frame pair are obtained.

For merging the segmented instances in overlapping frame pairs, we identify
same instances by the highest intersection over union (IoU) between each seg-
mented instance in the overlapping frame. The resulting segmentations are then
upsampled back to the original image size, generating the final segmented and
tracked instances.

3 Experimental Setup and Results

We train the networks with TensorFlowH and perform on-the-fly data augmenta-
tion with SimpleI TKP} We use hourglass networks with seven levels and an input
size of 256 x 256, while we scale the input images to fit. All recurrent networks
are trained on sequences of ten frames. We refer to the supplementary material
for individual training and augmentation parameters, as well as individual values
of parameter described in Section

! https://wuw.tensorflow.org/
2 http://www.simpleitk.org/
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Left Ventricle Segmentation: To show that our proposed recurrent stacked
hourglass network is able to incorporate temporal information, we perform se-
mantic segmentation on videos of short-axis MR slices of the heart from the left
ventricle segmentation challenge [14]. We compare the recurrent network with
a non-recurrent version, where we replace each ConvGRU with a convolution
layer to keep the network complexity the same. Since outer slices do not contain
parts of the left ventricle, the networks are evaluated on the three central slices
that contain both left ventricle myocardium and blood cavity (see Fig. . We
train the networks with a softmax cross entropy loss to segment three labels, i.e.,
background, myocardium, and blood cavity. We use a three-fold cross-validation
setup, where we randomly split datasets of 96 patients into three equally sized
folds. Table [Tal shows the IoU for our internal cross-validation of both recurrent
and non-recurrent stacked hourglass networks.

Leaf Instance Segmentation: We show that the cosine embedding loss and
the subsequent clustering are suitable for instance segmentation without tem-
poral information, by evaluating on the Al dataset of the CVPPP challenge for
segmenting individual plant leaves [7] (see Fig. . We use the non-recurrent
version of the proposed network from the previous experiment to predict em-
beddings with 32 dimensions. Consequently, the clustering is also performed on
single images. As we were not able to provide results on the challenge test set
in time before finalizing this paper, we report results of an internal three-fold
cross-validation of the 128 training images. In consensus with [I3], we report
the symmetric best Dice (SBD) and the absolute difference in count (|DiC|) and
compare to other methods in Table

Cell Instance Tracking: As our main experiment, we show applicability of our
full framework for instance segmentation and tracking by evaluating six differ-
ent datasets of cell microscopy videos from the ISBI celltracking challenge [15].
Each celltracking dataset consists of two annotated training videos and two test-
ing videos with image sizes ranging from 512 x 512 to 1200 x 1024 and with 48 to
138 frames. We refer to [6] for additional imaging and video parameters. As the
instance IDs in groundtruth images are consistent throughout the whole video
only for tracking, but not for segmentation, we merge both tracking and segmen-
tation groundtruth for each frame to have consistent instance IDs. Furthermore
to learn the background embeddings, we only use the frames on which every cell
is segmented. With hyperparameters determined on the two annotated training
videos from each dataset, we train the networks for predicting embeddings of
size 16 on both videos for our challenge submission.

To compete in the tracking metric of the challenge, the framework is required
to identify the parent ID of each cell. As the framework is able to identify
splitting cells and to assign new instance IDs (i.e., mitosis as seen on Fig. , the
parent ID of each newly created instance is determined as the instance with the
highest IoU in previous frames. We further postprocess the cells’ family tree to
be consistent with the evaluation criteria, e.g., an instance ID may not be used
after splitting into children. The results in comparison to the top performing
methods are presented in Table



6 Payer et al.

(a) Quantitative results of the heart
MRI left ventricle segmentation.

‘ IOUmyo ‘ IOUcaV

78.3+9.2189.1£7.7
79.4 £8.5|89.4+ 7.2

non-recurrent
recurrent

(b) Quantitative results of the
CVPPP leaf instance segmenta-
tion. Values taken from [13].

SBD |DiC|
RIS+CRF |66.6 +8.7{1.1+0.9
MSU 66.7+7.6(2.3+£1.6
Nottingham|68.3 6.3 |3.8 = 2.0
Wageningen|71.1 £6.2(2.2+ 1.6
IPK 74.4+43(|26+£1.38
IS+RA [II] |84.9 +4.8|0.8 + 1.0
Ours 84.5+5.5(1.5+1.2

(b) Plant leaves input and instances.

Fig. 3 & Table 1: Results of the left ventricle segmentation and the CVPPP
leaf instance segmentation. Values show mean + standard deviation. Note that
we report our results for both datasets based on a three-fold cross-validation
setup. Thus, they are not directly comparable to other published results. SBD:
symmetric best Dice; |DiC|: absolute difference in count; ToU: intersection over
union; myo: myocardium; cav: blood cavity.

4 Discussion and Conclusion

Up to our knowledge, we are the first to present a method that incorporates
temporal information into a network to allow tracking of embeddings for instance
segmentation. We perform three experiments to show different aspects of our
novel method, i.e., temporal segmentation, instance segmentation, and combined
instance segmentation and tracking. Thus, we demonstrate the wide applicability
of our approach.

We use the left ventricle segmentation experiment to show that our novel
recurrent stacked hourglass network can be used for incorporating temporal in-
formation. It can be seen from the results of the experiment that incorporating
ConvGRU between contracting and expanding path deeply inside the architec-
ture improves over the baseline stacked hourglass network. Nevertheless, since we
simplified the evaluation protocol of the challenge, the results of the experiment
should not be directly compared to other reported results. Moreover, benefits of
such deep incorporation compared to having recurrent layers on other positions
in the network [I1] remain to be shown.

This paper also contributes with a novel embedding loss based on cosine
similarities. Most of the methods that use embeddings for differentiating be-
tween instance segmentations are based on maximizing distances of embeddings
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Table 2: Quantitative results of the celltracking datasets for overall perfor-
mance (OP), segmentation (SEG), and tracking (TRA), as described in [I5].

DIC- Fluo-| Fluo- Fluo- PhC- Fluo-
HeLa MSC| GOWT1 HeLa U373 SIM+
15 0.864 0.759 0.951 0.942 0.951 0.882 Ours
OP ondl0.828 0.676 0.914 0.940 0.896 0.878|  BGU-IL (1-2)
34 0.629 0.658 0.902 0.928 0.895 0.874 CUNI-CZ
5% 0.631 11%F 0.829] 4% 0.888] 9" 0.810 CVUT-CZ
T 0.814 0.645 0.927 0.903 0.920 0.802 FR-Be-GE
SEG 20l 0.776 0.590 0.893 0.893 0.832 0.791 FR-Ro-GE
34l 0.464 0.582 0.887 0.869 0.826 0.781 HD-Har-GE
5% 0.496| 4°® 0.880[ 10* 0.749( 5°® 0.793| 8 0.718 KIT-GE
15 0.915 0.873 0.976 0.991 0.983 0.975| | KTH-SE (1-4)
TRA 2ndl - 0.881 0.765 0.947 0.987 0.981 0.961 LEID-NL
3| 0.797 0.763 0.925 0.986 0.977 0.957
12 0.909 10" 0.902

in the Euclidean space, e.g., [§]. When using such embedding losses, we observed
problems when combining them with recurrent networks, presumably due to
unrestricted embedding values. To overcome these problems, we use cosine sim-
ilarities that normalize embeddings. The only other work that suggests cosine
similarities for instance segmentation with embeddings is the unpublished work
of [5]. However, compared to their embedding loss that takes all instances into
account, our novel loss focuses only on neighboring ones, which can be benefi-
cial for optimization in the case of a large number of instances. We evaluate our
novel loss on the CVPPP challenge dedicated to instance segmentation from still
images. While waiting for the results of the competition, our method evaluated
with three-fold cross-validation shows to be in line with the currently leading
method, and has a significant margin to the second best. Moreover, compared to
the leading method [I1], the architecture of our method is considerably simpler.

In our main experiment for segmentation and tracking of instances, we eval-
uate our method on the ISBI celltracking challenge, showing large variability
in visual appearance, size and number of cells. Our method achieves two first
and two second places among the six submitted datasets in the tracking metric.
For the dataset DIC-HeLa, having a dense layout of cells as seen in Fig. [T} we
outperform all other methods in both tracking and segmentation metrics. On
the dataset Fluo-GOWT1 we rank overall second. On the datasets Fluo-HeLa
and Flou-SIM+, which consist of images with small cells, our method does not
perform well due to the need to downsample images for the network to pro-
cess them. When the downsampling results in drastic reduction of cell sizes, our
method fails to create instance segmentations, thus explaining the not satisfying
performance also in tracking. To increase the resolution and consequently im-
prove segmentation and tracking, we could split the input image into multiple
smaller parts, similarly as done in [12].
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In conclusion, our work has shown that embeddings for instance segmentation

can be successfully combined with recurrent networks incorporating temporal
information to perform instance tracking. In future work, we will investigate the
possibility of incorporating the required clustering step inside of a single end-to-
end trained network, which could simplify the framework and further improve
the segmentation and tracking results.
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Appendix

1 Network and Training Parameters

We set the network parameters as follows: The weights of each convolution layer
of the stacked hourglass network are initialized with the method as described
in [16], the biases with 0. The networks do not employ any normalization layers
or dropout, but use an L2 weight regularization factor of 0.00001. Due to the
demanding training of recurrent neural networks, in terms of both memory and
computational requirements, we set the mini-batch size to 1. We train the re-
current networks for sequences of 10 consecutive frames. For the non-recurrent
neural networks, we use a mini-batch size of 10. We train all networks with
ADAM [17] for total 40000 iterations and a learning rate of 0.0001, while the
learning rate is reduced to 0.00001 after 20000 iterations. Training of a recurrent
networks took ~ 12 hours, training of the non-recurrent networks took =~ 8 hours
on a single NVIDIA Titan Xp with 12 GB.

2 Data Preprocessing and Augmentation Parameters

We perform input data augmentation, by changing intensity values and spatial
deformations. First, we change the image intensity values such that the mini-
mum and maximum values are —1 and 1. As MR and microscopy images may
contain outliers in terms of minimum and maximum values, we calculate the
minimum value as the median of i,;, % of all intensity values of an image, and
the maximum as the median of i,,,,%. Then, for augmentation, we shift each
intensity value randomly by ishiee and scale each intensity by éscale. For the ran-
dom spatial deformations in both x and y axes, we translate by t pixels, flip axis
with probability f,, rotate by r degrees and scale by s. Furthermore, we employ
elastic deformations, by randomly moving points by b pixels on a grid of size
g and interpolating with third order splines. All random augmentations sample
from a uniform distribution within the specified intervals.

Left Ventricle Segmentation: The augmentation parameters are as follows:
Intensity transformations: imin = 10%, imax = 10%, isnigs € [—0.25,0.25], iscale €
[0.75,1.25]. Spatial transformations: ¢ € [-20,20], f, = 0, r € [-15,15], s €
[0.75,1.25], b =8, g € [—10,10]. We set default pixel values outside the defined
image region to 0.

Leaf Instance Segmentation: The augmentation parameters are as follows:
Intensity transformations: imin = 1%, imax = 1%, ishitt € [—0.25,0.25], iscale €
[0.75,1.25]. Spatial transformations: ¢t € [-12,12], f, = 0.5, r € [-180,180],
s € [0.75,1.25], b = 8, g € [—10, 10]. For each instance i € I, we define all pixels
inside the segmentation mask as S(?), and all pixels of all other instances as N(*).
We perform mirror padding for pixels outside the defined image region, but we
do not calculate the loss for these pixels.
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Cell Instance Tracking: Unless otherwise stated, the augmentation parame-
ters for all datasets are as follows: Intensity transformations: i, = 20%, max =
10% (for Fluo-MSC and Fluo-SIM+ we set imax = 1%), ishits € [—0.25,0.25],
iscale € [0.75,1.25]. Due to noise in the intensity values, we smooth the images
with a Gaussian function with o = 2 pixel. Spatial transformations: ¢ € [—-25, 25],
fp=0.5, r € [-180,180], s € [0.75,1.25], b = 8, g € [—10, 10]. For each instance
i, we define all pixels inside the segmentation mask as S, while we set N
to only neighboring instances within a specified radius ry in pixels. For dataset
Fluo-MSC we set ry = 150, for the dataset Fluo-HeLa we set ry = 25. For all
other datasets we set ry = 50. For each mini-batch, we use at most 32 differ-
ent instances for training, to reduce memory consumption. We perform mirror
padding for pixels outside the defined image region, but we do not calculate the
loss for these pixels.

3 Clustering Parameters

We append the image coordinates scaled with factor ¢ to value of the embeddings
as data points for the clustering algorithm. We modify the parameters ¢ and
Mpts for each dataset, while we set meigize = Mpts and tgize = %. DIC-HeLa:
Mpts = 1000, ¢ = 0.02; Fluo-MSC: myps = 500, ¢ = 0.1; Fluo-GOWT1: mpes =
50, ¢ = 0.001; Fluo-SIM+: mys = 100, ¢ = 0.001; Fluo-HeLa: mps = 25,
¢ = 0.01; PhC-U373: mpes = 500, ¢ = 0.005; For the CVPPP dataset we set
mpts = 50, ¢ = 0.001.
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(a) DIC-HeLa

(b) Fluo-MSC

(¢) Fluo-GOWT1

Fig. 4: Example results of the evaluated celltracking datasets. Left: normalized
input; middle: three randomly chosen dimensions of the embedding as RGB
channels; right: final instance segmentation.



12 Payer et al.

(a) Fluo-SIM+

(b) Fluo-HeLa

(¢c) PhC-U373

Fig.5: Example results of the evaluated celltracking datasets, continued.
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