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Abstract. We propose a loss function for training a Deep Neural Net-
work (DNN) to segment volumetric data, that accommodates ground
truth annotations of 2D projections of the training volumes, instead of
annotations of the 3D volumes themselves. In consequence, we signifi-
cantly decrease the amount of annotations needed for a given training
set. We apply the proposed loss to train DNNs for segmentation of vas-
cular and neural networks in microscopy images and demonstrate only
a marginal accuracy loss associated to the significant reduction of the
annotation effort. The lower labor cost of deploying DNNs, brought in
by our method, can contribute to a wide adoption of these techniques
for analysis of 3D images of linear structures.

1 Introduction

Linear structures such as blood vessels, bronchi and dendritic trees are perva-
sive in medical imagery. Automatically recovering their topology has therefore
become critically important to fully exploit the vast amounts of data that mod-
ern imaging devices can now produce. Machine Leaning based techniques have
demonstrated their effectiveness for this purpose, but usually require substantial
amounts of annotated training data to reach their full potential.

Unfortunately, annotating complex topologies in 3D volumes by means of
an inherently 2D computer interface is slow and tedious. The annotator must
frequently rotate and move the volume to verify the correct placement of con-
trol points and to reveal occluded details. Not only is this inherently slow, but
such interactions require continuously re-displaying large amounts of data, which
often exceeds the capacity of a workstation, thus introducing further delays.

In this paper, we show that we can train a Deep Net to perform 3D volumetric
delineation given only 2D annotations in Maximum Intensity Projections (MIP),
such as those shown on the right side of Fig. 1. This is a major time-saver because
delineating linear structures in 2D images is much easier than in 3D volumes and
involves none of the difficulties mentioned above. Furthermore, semi-automated
annotation tools work more smoothly on 2D than on 3D data. In short, limiting
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Fig. 1. 3D training using 2D annotations only. We first annotate the 2D Maximum
Intensity Projections (MIP) of the training image stacks. Then, we minimize a cross
entropy loss between the annotated 2D MIPs and the corresponding projections of the
3D prediction made by the network fw we are training.

the annotation effort to the projections leads to a considerable labor saving
without compromising the performance of the trained network.

More specifically, we introduce a loss function that penalizes discrepancies
between the maximum intensity projection of the predictions and the 2D anno-
tations. We show that it yields a network that performs as well as if it had been
trained using full 3D annotations. The loss is inspired by space carving, a clas-
sical approach to reconstructing complex 3D shapes from arbitrarily-positioned
cameras [1]. Space carving exploits the fact that visual rays corresponding to
background pixels in 2D images cannot cross any foreground voxel when passing
through the volume. Conversely, rays emanating from foreground pixels have
to cross at least one foreground voxel. In our case, the rays are parallel to the
projection axes. The network is trained to minimize the cross-entropy between
the 2D annotations and the maximum values along the rays.

Our contribution is therefore a principled approach to reducing the annota-
tors’ burden when training a Deep Net by enabling them to trace in 2D instead
of 3D, while still capturing the full 3D topology of complex linear structures. We
demonstrate this on 3D light microscopy images of neurons and retinal blood
vessels and on Magnetic Resonance Angiography (MRA) brain scans.

2 Related Work

Early approaches to delineation of 3D curvilinear structures relied on filters
manually designed to respond strongly to tubular segments [2–4]. They do not
require to be trained, but their performance degrades when the structures be-
come irregular and the images noisy. This has led to the emergence of machine
learning based methods that can cope with such difficulties, given enough an-
notated data [5–8]. The most recent one of these [8] relies on Deep Learning for
neuron tracing by adaptive exploration of 3D light microscopy images.

However, using Machine Learning, and Deep Learning in particular, requires
large amounts of annotated training data. Furthermore, annotating 3D stacks is
much more labor-intensive than annotating 2D images. Only true experts, whose
time is precious, are able to orient themselves and follow complex structures in



large volumes [9]. Until now, this problem has been handled by developing better
ways to visualize and interact with image stacks [10, 8]. In [11], only a few slices of
a volume are annotated and the loss is computed using only them. The technique
of [9], like ours, allows the annotator to trace a linear structure in a maximum
intensity projection and then attempts to guess the value of the third coordinate
using a simple heuristic. While effective when the structures are relatively sparse,
this can easily get confused as the scene becomes more cluttered.

The originality of our approach is to introduce a method that relies solely on
2D annotations in Maximum Intensity Projections, yet captures the 3D structure
of complex linear structures when the projections are used jointly.

3 Method

3.1 From 3D to 2D Annotations

Let us first consider the problem of training a neural network fw, parameterized
by weights w, to segment linear structures within 3D image stacks, given a
training set T of pairs (x, ỹ), where each 3D image x is accompanied by the
corresponding volumetric ground-truth annotations ỹ. We denote the elements
of x and ỹ by xijk and ỹijk, where i, j, k index the positions of the elements
within the volumes. The ground-truth labels take a value in the set {1, 0,∅},
which indicate the presence of a linear structure in voxel i, j, k if ỹijk = 1, the
absence of a linear structure if ỹijk = 0, and uncertainty of the annotator if
ỹijk = ∅. Delineation can then be cast as a binary segmentation problem by
simply ignoring the voxels labeled as ∅ during training. The network output
y = fw(x) has the same size as the input and contains probabilities of presence
of a linear structure in each voxel. To train the network, we find

arg min
w

∑
(x,ỹ)∈T

∑
i,j,k

L(fw(x)ijk, ỹijk) , (1)

where fw()ijk denotes voxel i, j, k of the prediction, and the loss L(y, ỹ) is taken
to be the cross entropy C (y, ỹ) = [ỹ = 1] log y+[ỹ = 0] log(1−y), where [·] is the
Iverson bracket. As discussed in the introduction, the drawback of this approach
is that generating the ground-truth labels ỹ in sufficient numbers to train a deep
network is tedious and expensive when operating on large volumes.

To alleviate this problem, we reformulate the loss function of Eq. 1 so that
it can exploit annotated Maximum Intensity Projections (MIPs) of the input
volumes. A MIP of volume x along direction i, which we denote as xi, is a
2D image with elements xi

jk = maxi xijk. Annotating MIPs is easy when the
structures of interest have high intensity and are clearly visible in the projections.
A MIP annotation ỹi comprises elements ỹijk ∈ {1, 0,∅}, which can also be

thought of as ỹijk = maxi ỹijk. MIPs of the volume along the directions j and k,
and their annotations, are defined similarly.

Since ỹijk = 0 tells us that all voxels of the input column jk contain back-

ground while ỹijk = 1 tells us that at least one voxel in the input column contains
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Fig. 2. Handling cropped volumes. (a) A 3D volume with three foreground voxels, the
annotations of its MIPs in green, and the visual hull computed from these in blue. (b)
The volume has been cropped so that only the left half remains. The annotations have
been cropped to match, leaving a single blue voxel in the visual hull. Reprojecting it
into the MIPs lets us eliminate the extraneous annotations, indicated with red arrows.
(c) However, there are situations such as the one depicted here, where some will survive.

a linear structure, we define the max-projection f i
w(x) along direction i of the

network output as the image with elements f i
w(x)jk = maxi fw(x)ijk. We pro-

ceed similarly for directions j and k. We then rewrite our training loss as∑
(x,ỹ)∈T
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L
(
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i
jk

)
+
∑
ik

L
(
f j
w(x)ik, ỹ

j
ik

)
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L
(
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w(x)ij , ỹ

k
ij

))
. (2)

Note that f i
w(x)jk upper bounds the probability of presence of a linear structure

in column jk. Eq. 2 penalizes large values of this upper bound whenever ỹijk = 0,

thus mimicking space carving. When ỹijk = 1, minimizing the loss increases the
largest prediction in the column.

3.2 Visual Hull for Training on Cropped Volumes

Due to memory limitations, the annotated training volumes are typically cropped
into sub-volumes and the MIP can be cropped to match. However, the cropped
annotations may then contain labels for structures located outside the volume
crop, as illustrated by Fig. 2. To reduce the influence of these extraneous anno-
tations, we use another element of the space carving theory, the visual hull h. h
is a volume containing the original one, and constructed from its projections [1].

By construction, an element of the hull hijk = 1 if and only if all of its
projections are labelled as foreground. In our context, a foreground voxel outside
a crop only produces an incorrect annotation in a single projection. Therefore,
as shown in Fig. 2, we can very often eliminate it by projecting the visual hull
back to the 2D annotations and discarding those that fall outside.



3.3 Implementation

In practice, we implemented fw as a U-Net style network [12]. Specifically, we
made the original convolution-ReLU blocks residual, and only used two max-
pooling operations instead of the usual four, which resulted in a more compact
network that fits in memory even with larger volume crops. In all our exper-
iments, we trained the network for 200K iterations, using the ADAM update
scheme [13] with momentum of 0.9, weight decay 10−4 and step size 10−5.

4 Experimental Evaluation

I

II

III
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Fig. 3. Results on our three datasets, from top to bottom, axons, retinal blood vessels,
and brain vasculature in MRA scans. (a) 2D annotations in 3 MIPs of a training
volume. The foreground centerline annotations are marked in white and the regions to
be ignored around them in gray. (b) Input test image volume. (c) Output segmentation.

4.1 Data and Annotations

We tested our approach on three data sets that differ in terms of the imaged
tissue, the acquisition modality and the image resolution. As a result, there are
substantial variations with respect to the density of the structures of interest,
their appearance and the amount of clutter originating from extraneous objects.

Axons. The dataset comprises 16 stacks of 2-photon microscopy images of
mouse neural tissue, with sizes ranging from 40× 200× 200 to 136× 322× 500
voxels and a resolution of 0.8× 0.26× 0.26 µm. We split the data into a test set



of two volumes of size 136× 233× 500, and a training set of 14 smaller volumes.
The top row of Fig. 3 depicts one of the test volumes.

Retina. The dataset is made of two confocal microscopy image stacks depicting
retinal blood vessels, sized 1024× 1024× 110, and with a resolution of 0.62 µm.
We use one for training and the other, depicted in Fig. 3, for testing. Since
most vessels are located within a 50-pixel high XY slice, MIPs in the X and Y
directions are very cluttered. Therefore, we split the volume into 16 256× 256×
110 subvolumes and annotated their MIPs. In other words, we also traced the
vertical faces of the smaller volumes. This only requires annotating 6 additional
1024 × 110 images, which is still fast. The middle row of Fig. 3 describes both
our 2D annotations and the results on one of the test sets.

Angiography. This set of MRI brain scans [14], one of which is shown in
Fig. 3, is publicly available. It consists of 42 annotated stacks, which we cropped
to a size of 416 × 320 × 128 voxels by removing the margins. Their resolution
is 0.5 × 0.5 × 0.6 mm. We partitioned the data into 31 training and 11 test
volumes. As in the case of the retinal vessels, we decreased the visual clutter by
splitting each volume into 4 208× 160× 128 subvolumes for which we produced
2D annotations. This requires annotating an additional 416 × 128 image and a
320× 128 one. The bottom row of Fig. 3 describes both our 2D annotations and
our results on one of the test sets.

All the manual annotations are expressed in terms of the 2D and 3D cen-
terlines of the underlying structures. We then use a pixel-width of 11 for the
first two datasets and 7 for the third to define the area around the centerline to
be ignored when computing the loss, as discussed in Section 3.1, as well as for
computation of the visual hulls, as described in Section 3.2.

4.2 User Study
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Fig. 4. Annotation times captured during the user study. Each user annotated each of
the volumes both in 3D and in 2D. Each point in the plot represents the time consumed
by a single user to annotate a single volume, its x-coordinate corresponding to the 3D
annotation time, and the y-coordinate representing the time needed to complete the
2D annotation. Different colors denote different volumes.



The usefulness of our approach is predicated on the claim that tracing in 2D
is much easier than in 3D. To substantiate it, we conducted a small user study
involving 5 PhD students used to performing such delineation tasks for research
purposes. We asked them to annotate three volumes from the axon dataset using
the Fiji Simple Neurite Tracer plugin [2], both in 2D and in 3D, and recorded
how long it took them to complete these two tasks. We report the results in
Fig. 4. For the two smaller volumes—292 × 292 × 40 and 231 × 231 × 71—it
took people 3 to 4 minutes to create the 3D annotations and about 25% to 50%
less in 2D. For the larger 335 × 335 × 67 volume, the 3D annotation time grew
substantially but, it took about half as long to annotate in 2D.

While this study is too small to be statistically significant, it shows a clear
trend: The larger the volume to be annotated, the more tedious the 3D annota-
tion process, and the more attractive it becomes to annotate solely in 2D.

4.3 3D vs 2D Annotations

The 2D annotations are faster and easier but are a priori less informative than
the 3D ones, and we could expect a performance drop when using the former.
We now show that our framework prevents this drop from materializing.

F1 score Time saving [%]
Axons Retina Angiography

UNet/3D annot. 75.4 81.5 77.6 0
UNet/3 MIP annot./volume 78.1 78.2 75.9 50

UNet/2 MIP annot./volume 75.0 77.8 74.8 60
UNet/1 MIP annot./volume 72.3 39.0 57.7 70

Slice annot. [11] 70.8 75.8 74.1 50
Tubularity Score [4] 58.8 77.1 22.7 100
Centerline Detection [7] 68.5 62.6 50.3 0

Table 1. F1 score performance and corresponding time savings.

In Table 1, we compare the results obtained by training either on 2D or
on 3D annotations in terms of the F1 score—the harmonic mean of precision
and recall, which is a standard measure of binary segmentation performance—
computed in 3D with respect to the 3D annotations. To ensure that the scores
are comparable in both scenarios, we use the projections of the 3D annotations
as our 2D annotations. In the rightmost column, we give an estimate, based
on the above user study, of the time that could be saved by generating the
2D annotations instead of the 3D ones. In short, we obtain roughly the same
performance—slightly better for the axons, slightly worse for the retina and
brain scans—at half the annotation cost.

We can further reduce the amount of annotations used by training our ap-
proach using only 2 or even 1 single projection. The performance remains com-
petitive when two projections are used, but decreases for a single one.

Whether using 3D or 2D annotations, these results rely on the modified U-Net
architecture discussed in Section 3.3. For completeness, we also list in Table 1 the
performance of an earlier Deep Net approach that relies on annotating a subset



of slices [11]—and requires about the same amount of annotation as ours— and
the performance attained by two older techniques [4, 7], which our approach also
outperforms.

5 Conclusion

We have proposed a method for training DNNs to segment 3D images of linear
structures using only annotations of 2D maximum intensity projections of the
training data instead of full 3D annotations. We demonstrated that this results in
decreased annotation requirements without loss of performance. To this end, we
have exploited properties of visual hulls that are not specific to linear structures.
In future work, we therefore intend to show that the scope of this technique is
in fact much broader, for example by applying it to 3D membrane extraction.
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11. Çiçek, Ö., Abdulkadir, A., Lienkamp, S., Brox, T., Ronneberger, O.: 3D U-Net:
Learning Dense Volumetric Segmentation from Sparse Annotation. In: MICCAI.
(2016) 424–432

12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomed-
ical Image Segmentation. In: MICCAI. (2015)

13. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv
Preprint (2014)

14. Bullitt, E., Zeng, D., Gerig, G., et al.: Vessel Tortuosity and Brain Tumor Malig-
nancy: A Blinded Study. Acad Radiol 12(10) (October 2005) 1232–1240


