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Abstract. The recent introduction of Full Laboratory Automation
(FLA) systems in Clinical Microbiology opens to the availability of
huge streams of high definition diagnostic images representing bacteria
colonies on culturing plates. In this context, the presence of β-hemolysis
is a key diagnostic sign to assess the presence and virulence of pathogens
like streptococci and to characterize major respiratory tract infections.
Since it can manifest in a high variety of shapes, dimensions and inten-
sities, obtaining a reliable automated detection of β-hemolysis is a chal-
lenging task, never been tackled so far in its real complexity. To this aim,
here we follow a deep learning approach operating on a database of 1500
fully annotated dual-light (top-lit and back-lit) blood agar plate images
collected from FLA systems operating in ordinary clinical conditions.
Patch-based training and test sets are obtained with the help of an ad-
hoc, total recall, region proposal technique. A DenseNet Convolutional
Neural Network architecture, dimensioned and trained to classify patch
candidates, achieves a 98.9% precision with a recall of 98.9%, leading
to an overall 90% precision and 99% recall on a plate basis, where false
negative occurrence needs to be minimized. Being the first approach able
to detect β-hemolysis on a whole plate basis, the obtained results open
new opportunities for supporting diagnostic decisions, with an expected
high impact on the efficiency and accuracy of the laboratory workflow.
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1 Introduction

Clinical microbiology is tasked with providing diagnosis and treatment of infec-
tious diseases. The ability to achieve accurate diagnoses in standardized and
reproducible conditions is of utmost importance in order to provide appropri-
ate and fast treatment. The gold standard for bacteria identification in the
workflow of Clinical Microbiology Laboratories (CML) is bacteria culturing on
agar plates. Since traditionally performed almost totally manually, this requires
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labor-intensive pre-analytical phases with critical aspects arising with respect to
both intra- and inter-laboratory repeatability. Nevertheless, new groundbreak-
ing trends related to the recent diffusion of Full Laboratory Automation (FLA)
systems started deeply changing working habits in many clinical microbiology
facilities worldwide [1,2]. A single FLA plant is able to process even thousands
of plates per day, generating huge flows of high-resolution digital images (taken
during and after plate incubation) to be read on diagnostic workstations. As a
consequence, the new field of Digital Microbiology Imaging (DMI) involves high
expectations related to the solution of a variety of visual interpretation chal-
lenges aimed at supporting and improving the accuracy and speed of the clinical
procedures and decisions in CMLs. In this work we focus on the automated
detection of one of the main diagnostically relevant features for the assessment
of human infections, that is the identification of phatogens’ β-hemolytic activity.

1.1 Problem Definition

β-hemolysis is an effect caused by certain bacteria species growing on blood agar
plates that leads to the dissolution of the blood substrate surrounding the colony.
The produced visual effect is a yellowish halo visible by holding the plate against
the light [3] or on back-lit images acquired by FLA systems under proper plate
illumination settings. In many clinical microbiology protocols, β-hemolysis has
high impact and it is the (almost) first step of a chain that needs a high sensi-
tivity. This is true especially in throat swabs culture, and when it is important
to address streptococci. Moreover, there is a diagnostically relevant informa-
tion about virulence (see for instance E. Coli [4]) that is promptly available
from hemolytic activity assessment which is not possible or difficult to achieve
by other diagnostic procedures. However, to accurately distinguish β-hemolysis
with the naked eye in all possible manifestations is difficult even for a skilled
microbiologist. This requires caution and experience and, especially under high
labs load, it is an error prone procedure. In Fig. 1 some examples of negative
(a–f) and positive (g–p) cases are shown. In the first line of positive examples
(g–l) β-hemolysis is easily recognizable, even if appearing in a variety of differ-
ent morphological forms and textures: in the middle of a confluence growth (g),
over a written portion of the plate (h), or forming multiple rings (i) or in heavy
mixed situations inside big confluences (l). These situations and their variability
configure a first main challenge (we refer to it as Multiform Challenge, MC ) for
a machine which is asked to reliably classify images, usually well interpretable
by a microbiologist, by containing false positives (FP) while maintaining a high
recall. A second challenge (we refer to it as Detectability Challenge, DC ) occurs
in cases with soft hemolysis like in (m, n) and particularly in diagnostically
relevant cases when early detection by humans start being difficult due to the
presence of very thin halos (check for example (b) with respect to (o)), or when
β-hemolysis is barely visible because hidden under the colony (see (p)). In this
case both humans and machine-based techniques are particularly committed to
prevent false negatives (FN) by maintaining a suitable degree of precision.
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Fig. 1. Negative and positive β-hemolysis examples on blood agar plates. The dotted
yellow line highlights the β-hemolytic regions.

1.2 Related Work and Contribution

So far, there has been only one and very recent work dealing with the problem of
automated detection of hemolysis on agar plates [5], where a machine-learning
method based on hand-crafted features is able to accurately classify hemolysis
on image patches representing single colonies. On the one hand, this previous
work does not handle detection on a whole plate basis and is not even able
to handle most of the frequently occurring range of cases exemplified in Fig. 1
(under-the-colony, within confluences, very thin halo, over the written part cases)
which characterize the clinical problem in its real complexity. On the other hand,
classification in [5] comprises α-hemolysis (which generates a brownish halo),
which is however virtually absent and of no diagnostic interest for the throat-
swab clinical context considered in our work.

Deep learning (DL) approaches, especially those based on Convolutional Neu-
ral Networks (CNN), have recently been shown to outperform feature-based
machine learning solutions whenever difficult visual tasks and large datasets
are involved. Applications of deep learning to medical image analysis started to
appear consistently only very recently and nowadays are rapidly spreading [6].
Concerning DL methods in the field of DMI, Ferrari et al. [7] already proposed
a system for bacterial colony counting, while Turra et al. [8] started investi-
gating bacterial species identification by using hyper-spectral images. More in
general, DL detection methods in Computer Assisted Diagnosis (CAD) contexts
have been recently proposed for classification of skin cancer [9], cells and mitosis
detection [10,11], and mammographic lesions [12], to name a few.

In this work, by exploiting a dataset created for the purpose (as described
in Sect. 2), we present a β-hemolysis detection technique, based on a region
proposal stage (Sect. 3.1) followed by a CNN (Sect. 3.2) which classifies image
patches as β-hemolytic or not. Our system is able to effectively cope with the
highly diversified behaviour that β-hemolysis displays in the considered CML
procedures involving throat swab cultures finalized to respiratory tract infections
identification. Our approach overcomes all the limitations of [5] thus resulting
the first one capable to work in real complexity conditions (i.e., facing both the
above defined challenges MC and DC ). We eventually validate the effectiveness
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of the method according to both patch-based and whole-plate tests to evaluate
the quality of the classification stage and of the overall system, respectively
(Sect. 4).

2 Throat Swab Culture Dataset

We collected a dataset from 1,500 culture plates coming from routine lab screen-
ing tests and produced by the inoculation of throat swab samples on REMEL
5% sheep blood agar media. Images came from a WASPLab FLA system (by
Copan Diagnostics Inc.) which acquires, by linear scanning, 16-mega-pixel RGB
color images. For each plate we retrieved both back-light and top-light acqui-
sitions. The ground truth data for the training process consists in throat swab
(1,200 plates), randomly selected from a one week of work in a medium size
lab, and comprises the segmentation maps produced for the purpose by expert
microbiologists that delineated β-hemolytic regions. This dataset is composed of
160 positive plates and 1,040 negative ones. In order to create a blind test-set
for the overall evaluation of the system, we labelled another batch composed of
300 new plates acquired two weeks after with respect to the training one. In this
case we only required specialists to give information accounting for the presence
or not of β-hemolysis. In this case we had a proportion of 51 positive plates and
249 negative ones.

From the image database an image patch dataset can be created by consider-
ing 150×150 pixel patches extracted from the 1200 fully annotated plate images,
labeling them as positives if at least one pixel from the delineated β-hemolytic
regions falls inside a 100 × 100 pixel region centered with respect to the patch.
Every patch is taken with a 33% of overlap so that every portion of the image
falls inside the 100-pixel region. We choose 150 pixels as patch dimension as a
good trade-off between the colony dimensions and the required computational
effort. To the above patches extracted on a regular grid basis, we added all the
patches generated by the differential region proposal approach that we explain in
Sect. 3.1, resized to 150× 150 pixels if needed, where again each patch is labeled
negative or positive according to the same rule above. This is done to add more
examples similar to those that will be encountered during test-time, when only
patches coming from the region proposal are considered. At the same time, the
use of a sliding window guarantees to collect a suitable amount of training mate-
rial, being the region proposal tailored to the reduction of the analyzed patches.
Moreover, since following natural CML proportions, negative patches would be
about 50 times more than the positive ones, we randomly sample just a portion
of them, from each plate, until the patch dataset results balanced. Finally, the
full set of patches (about 160k in total) is further divided on a plate basis in two
additional sets for the CNN training (70%) and validation (30%) processes.

3 β-Hemolysis Detection Method

In this section, we describe our approach to β-hemolysis detection, consisting
of a patch extraction (region proposal) phase followed by a classification stage



34 M. Savardi et al.

based on a specific CNN architecture. An overall scheme of the proposed solution
is depicted in Fig. 2.

Fig. 2. The overall system for β-hemolysis detection.

3.1 Patch Extraction

In a common scenario the plate is covered by colony growth only in a minor-
ity portion with respect to the whole substrate. Moreover hemolysis usually
involve (with few exceptions) only a small portion of the growth. This is why a
sliding window patch extraction mechanisms for hemolysis detection and classi-
fication would be highly inefficient. To significantly increase the computational
efficiency of our method we exploit the physical effect that hemolysis produces
i.e., an erosion of the blood film, which results in a region in which more light
is transmitted from below when acquired back-lit. Thus we adopt a region
proposal solution which works on a differential image obtained by subtract-
ing the back-lit image from the top-lit one. We process this image by bilateral
filter denoising and morphological filtering in order to produce a map com-
posed of high probability β-hemolytic blobs. Specifically, this map is obtained
as max(|Imgtop − Imgback|, t) •K, where • is a morphological closure operating
on the denoised differential image with a circular 5 × 5 structuring kernel K,
and where t is a parameter impacting on the recall of the patch-proposal that
mainly depends on the FLA illumination settings and plate manufacturer. All
the parameters, including t, are tuned by using the patch database so as to pro-
duce a 100% recall region proposal (no FNs). As a last step we use this map to
create a list of possible hemolytic regions to be extracted from the back-light
plate for the subsequent classification phase. In particular 150× 150 patches are
created with smaller regions in their centre or by subdivision of larger regions.

3.2 Patch Classification

For the patch-classification phase we need a state-of-the-art CNN architecture
particularly suited to be used on datasets with similar dimension and complexity
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to ours. This is why we selected DenseNet [13] which is composed of a fully-
interconnected series of layers that ensure maximum information flow and force
an efficient use of the learned representation (Fig. 2 top-right). DenseNet exposes
two parameters: the number of layers L which controls the vertical scale, while
the growth rate k accounts for the horizontal scale (i.e., the number of filters).
Moreover, to increase the computational efficiency we add a bottleneck layer
before each convolutional layer (solution referred to as DenseNet-BC). We train
the network from scratch following Xavier weight initialization. In this case in
fact, due to the new type of images, fine-tuning approaches would lead to no
performance improvement. We adopt Adam as optimizer, Keras framework with
TensorFlow, and a Nvidia GPU. We perform 120 training epochs with an initial
learning rate set to 0.01 and factor-two reduction on plateaus.

4 Results and Discussion

After a quantitative assessment of the complexity reduction factor produced by
the region proposal method, we evaluate the obtained detection performance
according to two different criteria: (1) Patch-based : we consider the ability to
correctly identify and classify patches that present β-hemolysis from negative
ones. This metric is useful to evaluate and guide CNN hyper-parameter tuning
and training, and accounts for the high performance of the implemented solution
in response to both MC and DC challenges. (2) Plate-based : we investigate
the ability to correctly classify the whole plate, which is the ultimate clinically
relevant target.

Patch Extraction. The adopted region proposal allows to extract image patches
containing all regions with a high probability of β-hemolysis occurrence. Follow-
ing the parameter selection described in Sect. 3.1 we indeed obtained no FN, with
a concurrent 20× reduction in the number of patches to classify with respect to
the sliding window generation used for dataset creation (Sect. 2).

Patch Classification. In Table 1 we report some results obtained with differ-
ent configurations of DenseNet. We achieve best result with a medium capac-
ity model, either using or not the bottleneck layer BC. This can be explained
observing that medium-sized models have a number of trainable parameters
which is more compatible to the dimension of our dataset. Bigger models tend
to overfit and prevent to reach a good generalization. The adoption of conven-
tional radiometric and geometric data augmentation techniques accounts for an
improvement of about 0.2% already included in the final score. In Fig. 3(a) we
show the confusion matrix of the best classifier (BC-Medium). FN errors are
mainly due to borderline cases, which are also very difficult to discriminate to
the naked eye, while FP patches are typically caused by light reflections creating
misleading color effects on the plate. In the additional material we included both
correctly classified patches as well as FP and FN cases. Results are very promis-
ing with both recall and precision approaching 99%. This demonstrates a highly
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satisfactory response to both the MC and DC challenges defined in Sect. 1.1. In
Fig. 3(b), we show the CNN internal representation of the last hidden layer by
using a reduced dimensionality visualization based on t-SNE, where a random
portion of the validation patches is taken in input. This allows to appreciate the
good level of separability of the two classes (with isolated rare exceptions).

Table 1. DenseNet models comparison on patch classification task (L is the depth and
k the growth-rate as in [13]).

Model Parameters (106) Accuracy

Small (L = 13, k=12) 0.085 0.964

Medium (L = 22, k = 24) 0.961 0.989

Big (L = 40, k = 24) 4.182 0.968

BC-Small (L = 13, k = 12) 0.071 0.988

BC-Medium (L = 22, k = 24) 0.688 0.990

BC-Big (L = 40, k = 24) 1.906 0.954

Fig. 3. (a) Normalized confusion matrix of the patch-based classifier. (b) T-SNE visu-
alization of the last CNN hidden layer for β-hemolysis discrimination.

Plate Classification. We now apply the proposed pipeline to the 300 unseen
plates (blind test-set). Without any post-processing we reach 83% precision and
99% recall with only 3 FN plates with a single and very light β-hemolytic colony
in challenging conditions (in our cases near the plate border or below a colony).
All the images of FN plates are given in the additional material, with TP, TN
and FP meaningful examples as well. By using instead one third of the blind
test-set to tune the classification threshold, and test again on the remaining, we
reach a 90% precision with the same recall.

Finally, we compare our solution against the one in [5], using their publicly
available plate based test-set. In a fair comparison, which requires the exclusion
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of all the colonies grown over the written portion, we reach almost the same
recall of 96% with a significantly increased precision by 12% up to 87%. Beyond
this improvement, our method handles β-hemolysis detection inside confluences
(not considered in [5]) and over the usually large written plate portions as well,
thus standing as a system able to better cope with the real problem complexity.

5 Conclusion

We presented a fully automatic method for β-hemolysis detection on blood agar
plate images. We operated with a complexity reduction region proposal and with
a representation learning approach based on DenseNet CNN for the classification
of both single patches and full plates. Our solution evidenced highly satisfactory
performance on a blind test-set and overcomes performance and functional limi-
tations of a previous work. As a next step, we would like to integrate our method
in a diagnostic workflow with the microbiologist-in-the-loop. Our feeling is that
thanks to the achievements reached on both the multiform and detectability
challenges, further impact can be expected in terms of consistency and efficiency
as suggested in [14], where the combination of deep leaning predictions with the
human diagnostic activity led to significantly improve the total error rate.
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