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Abstract. A major cause of irreversible visual impairment is angle-
closure glaucoma, which can be screened through imagery from Anterior
Segment Optical Coherence Tomography (AS-OCT). Previous computa-
tional diagnostic techniques address this screening problem by extracting
specific clinical measurements or handcrafted visual features from the im-
ages for classification. In this paper, we instead propose to learn from
training data a discriminative representation that may capture subtle
visual cues not modeled by predefined features. Based on clinical pri-
ors, we formulate this learning with a presented Multi-Context Deep
Network (MCDN) architecture, in which parallel Convolutional Neural
Networks are applied to particular image regions and at corresponding
scales known to be informative for clinically diagnosing angle-closure
glaucoma. The output feature maps of the parallel streams are merged
into a classification layer to produce the deep screening result. Moreover,
we incorporate estimated clinical parameters to further enhance perfor-
mance. On a clinical AS-OCT dataset, our system is validated through
comparisons to previous screening methods.

1 Introduction

Glaucoma is the foremost cause of irreversible blindness. Since vision loss from
glaucoma cannot be reversed, improved screening and detection methods for
glaucoma are essential to preserve vision and life quality. A common type of
glaucoma is angle-closure, where the anterior chamber angle (ACA) is narrow
as shown in Fig. 1, leading to blockage of drainage channels that results in
pressure on the optic nerve. Anterior Segment Optical Coherence Tomography
(AS-OCT) has been shown to provide an objective method for the evaluation
and assessment of ACA structure [12], and thus has been widely used by recent
computational techniques for early screening of angle-closure glaucoma.
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(B) Open Angle (Normal) (C) Angle-closure Glaucoma
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Fig. 1. The example of (B) open angle and (C) angle-closure. The narrow anterior
chamber angle (ACA) blocks drainage channels of aqueous fluid.

Recently, several automatic angle-closure glaucoma assessment methods have
been studied. Tian et al. provided a Schwalbes line detection method for High-
Definition OCT (HD-OCT) to compute ACA measurements [15]. Xu et al. lo-
calized the ACA region, and then extracted visual features directly to classify
the glaucoma subtype [18,17]. Fu et al. proposed a data-driven approach to inte-
grate AS-OCT segmentation, measurement, and screening [6,5]. These methods
segment the AS-OCT image and then extract the representation based on clini-
cal parameters or visual features which are subsequently used for angle-closure
classification. These methods, however, lack sufficiently discriminative represen-
tations and are easily affected by noise and low quality of the AS-OCT image.
Recently, deep learning has been shown to yield highly discriminative represen-
tation that surpass the performance of handcrafted features in many computer
vision tasks [11,8]. For example, deep learning has high sensitivity and specificity
for detecting referable diabetic retinopathy in retinal fundus photographs [8].
Deep learning has also been shown to be effective in other retinal fundus appli-
cations [4,3,2]. These successes have motivated our examination of deep learning
for glaucoma assessment in AS-OCT imagery.

A common limitation of deep learning based approaches is the need to down-
sample the input image to a low resolution (i.e., 224×224) in order for the net-
work size to be computationally manageable [8]. However, this downsampling
leads to a loss of image details that are important for discrimination of sub-
tle pathological changes. To address this issue, we propose to supplement the
downsampled global image with a local window chosen at a specific ocular region
known to be informative for clinical diagnosis of angle-closure glaucoma [13]. The
benefit of including this local window is that it is small enough to be processed
by a deep network while maintaining the original image details.

Based on this, we propose a Multi-Context Deep Network (MCDN) archi-
tecture, which includes two parallel streams that jointly learn predictive repre-
sentations from the different regions/scales useful for angle-closure estimation.
Moreover, an intensity-based data augmentation is utilized to artificially enlarge
the AS-OCT training data in order to gain robustness to different AS-OCT imag-
ing devices. The main contributions of this work are as follows: (1) We introduce
deep learning to the problem of angle-closure glaucoma screening in AS-OCT
imagery, for the purpose of gaining more discriminative representations on dif-
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Fig. 2. The framework of our angle-closure glaucoma screening system, which contains
AS-OCT structure segmentation and MCDN. The CNN layer parameters are denoted
as “Conv (receptive field size)-(number of channels)”.

ferent regions for glaucoma screening prediction. (2) A MCDN architecture is
developed based on clinical priors about informative image areas. MCDN learns
predictive representations for these image regions through processing by sepa-
rate, parallel network streams. (3) An intensity-based augmentation of training
data is presented to deal with intensity variations among AS-OCT images. (4)
We also demonstrate that incorporating estimated clinical parameters can be
beneficial for final glaucoma screening. (5) A large-scale AS-OCT dataset con-
taining 8270 ACA images is collected for evaluation. Experiments show that our
method outperforms the existing screening methods.

2 Proposed Method

Our angle-closure glaucoma screening system include two stages, AS-OCT struc-
ture segmentation and MCDN, as shown in Fig. 2. The AS-OCT structure seg-
mentation is utilized to localize the ACA region and predict the screening result
based on clinical parameters, while the MCDN is used to gain the discriminative
representation and output the final angle-closure glaucoma screening. Finally,
the probability results of clinical parameter and deep learning are averaged to
produce the angle-closure glaucoma screening.
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2.1 AS-OCT Segmentation and Clinical Parameter

In our system, we implement the data-driven AS-OCT segmentation method
in [5], which utilizes marker transfer from labeled exemplars to generate initial
markers, and segments the major AS-OCT structure to compute the clinical
parameters. A 120 × 120 patch centered on the detected ACA is cropped and
used as the input of the following MCDN. Moreover, we also calculate the clin-
ical parameters (e.g., Anterior Chamber Width, Lens-Vault, Chamber Height,
Iris Curvature, and Anterior Chamber Area) and employ a linear Support Vec-
tor Machine (SVM) to predict an angle-closure probability. More details of the
clinical parameters can be found in [5].

2.2 Multi-Context Deep Network Architecture

Our MCDN architecture includes two parallel streams to obtain the represen-
tations for different clinical regions in an AS-OCT image, namely the global
fundus image and local disc region. As shown as in Fig. 2, each stream consists
of a sequence of convolutional units that each contain layers for convolution,
batch normalization [9], and Rectified Linear Units (ReLU) activation [10]. The
CNN of each stream learns and extracts local feature representations based on
patches randomly sampled from its input. The batch normalization aids training
the network [9], and the ReLU activation function is defined as f(x) = max(0, x),
where x is the input to the neuron.

The first stream processes the cropped patch centered on the ACA region
from the AS-OCT segmentation. This area is the most important for clinical
diagnosis, as several major clinical measurements are taken from it [13] (e.g., iris
curvature, angle opening distance, and trabecular-iris space area). The second
stream of our MCDN architecture learns a global feature map for the complete
cornea structure. In the clinical domain, the cornea structure offers various cues
associated with risk factors for angle-closure glaucoma [16], such as lens vault and
anterior chamber width, area and volume. The input images of the two streams
are all resized to 224 × 224 to enable use of pre-trained parameters from other
deep models [10,14] as the initialization for our network. The output maps of
these two streams are concatenated into a single feature vector that is fed into a
fully connected layer to obtain the final screening result. Here, the angle-closure
glaucoma screening is formulated as a binary classification task, and softmax
regression is employed as a generalization of the logistic regression classifier.
The classifier is trained by minimizing the following binary cross-entropy loss
function:

Loss = − 1

N

N∑
i=1

{yi log(g(w · xi)) + (1− yi) log(1− g(w · xi))} , (1)

where g(w·xi) is the logistic function with weight vector w, (xi, yi) is the training
set containing N AS-OCT images, xi is the output representation of the i-th
image and yi ∈ {0, 1} is the angle-closure label.
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Discussion: A related deep learning model is the Region-based Convolutional
Neural Network [7], which classifies object proposals using deep convolutional
networks. The object proposal regions are obtained using general object de-
tectors, in contrast to our work where we take advantage of clinical guidance
to specifically extract the ACA region for glaucoma diagnosis. Our proposed
MCDN architecture is also related to multi-scale or multi-column deep net-
works [1], which combine features from different scales or receptive field sizes,
and generate the final feature map to build a representation. Our network also
learns features at different scales, but constructs a more concise representation
that focuses on image areas and corresponding scales that are clinically relevant
to our problem. Avoiding extraneous information in this way facilitates network
training, especially in cases of limited training data. In the following experiment,
we also demonstrate that our MCDN architecture outperforms the multi-column
network (i.e., [1]) in the AS-OCT screening task.

Moreover, our system utilizes an individual linear SVM for clinical parameter
based estimation instead of concatenating them with deep features into the fully
connected layer. This is due to two considerations: 1) the dimensionality of clini-
cal parameters (24 D as in [5]) is much lower than that of deep features from the
two streams (2× 4096 D), which would reduce the impact of the clinical param-
eters; 2) estimation from clinical parameters with linear SVM has demonstrated
satisfactory performance in the previous works [13,5].

2.3 Data Augmentation for AS-OCT

AS-OCT images are captured along the perpendicular direction of the eye, and
the structure of the anterior chamber appears at a relatively consistent position
among AS-OCT images in practice. Traditional image augmentation, e.g. by ro-
tation and scaling, therefore does not aid in AS-OCT screening. On the other
hand, image intensities typically vary among different AS-OCT imaging devices,
which may affect screening accuracy. We thus employ an intensity-based augmen-
tation to enlarge the data with varied intensities, by rescaling image intensities
by a factor kI (kI ∈ {0.5, 1, 1.5} in this paper). To increase the robustness of
ACA region localization, we additionally perform data augmentation by shifting
the ACA position to extract multiple patches as the input to the ACA stream
in our MCDN architecture.

3 Experiments

For experimentation, we collected a total of 4135 Visante AS-OCT images (Model
1000, Carl-Zeiss Meditec) from 2113 subjects to construct a clinical AS-OCT
dataset. Since each AS-OCT image contains two ACA regions, each image is
split into two ACA images (8270 ACA images in total), with right-side ACA im-
ages flipped horizontally to match the orientations of left-side images. For each
ACA image, the ground truth label of open-angle or angle-closure is determined
from the majority diagnosis of three ophthalmologists. The data contains 7375
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Fig. 3. ROC curves with AUC scores on the Visante AS-OCT dataset.

open-angle and 895 angle-closure cases. The dataset is divided equally and ran-
domly into training and testing sets based on subject, such that the two ACAs of
one patient will not be separated between the training and test sets. We employ
several evaluation criteria to measure performance: Sensitivity (Sen), Specificity
(Spe), Balanced Accuracy (B-Acc), which are defined as

Sen=
TP

TP+FN
, Spe=

TN

TN+FP
, B-Acc =

1

2
(Sen+Spe),

where TP and TN denote the number of true positives and true negatives,
respectively, and FP and FN denote the number of false positives and false
negatives, respectively. Moreover, we additionally report the ROC curves and
area under ROC curve (AUC).

We compare our algorithm with several AS-OCT screening and deep learning
methods: (1) The clinical-based screening method in [2], which segments the AS-
OCT image and calculates several clinical parameters. A linear SVM is added to
determine a screening result from the parameters. (2) The visual feature-based
screening method in [17], which localizes the ACA based on geometric structure
and extracts histograms of oriented gradients (HOG) features to classify the
glaucoma subtype. The HOG features are computed on a 150× 150 region cen-
tered on the ACA, and the classification result is obtained using a linear SVM.
(3) The multi-column deep model in [1], which is a state-of-the-art deep learning
model with different receptive field sizes for each stream. For our algorithm, we
show not only the final screening result (Our MCDN), but also provide results
obtained without the clinical parameters (Our MCDN w/o CP), and the indi-
vidual stream result for the global fundus image (Global Image) and for the local
disc region (Local Region). The results are reported in Table 1 and Fig. 3.

Clinical parameters are defined by anatomical structure, and most of them
have a specific physical significance that clinicians take into consideration in
making a diagnosis. By contrast, visual features can represent a wider set of
image properties, beyond what clinicians recognize as relevant. Thus visual fea-
tures perform better than clinical parameters as expected, and achieve 0.9248
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Table 1. Performance of different methods on the Visante AS-OCT dataset.

AUC B-Accuracy Sensitivity Specificity

Clinical Parameter 0.8853 0.8198 0.7914 0.8483
Visual Feature 0.9248 0.8688 0.8503 0.8872
Multi-Column 0.9312 0.8802 0.8821 0.8783
Global Image 0.8941 0.8286 0.7846 0.8726
Local Region 0.9208 0.8790 0.8526 0.9055

Global + Clinical 0.9156 0.8508 0.8322 0.8694
Local + Clinical 0.9201 0.8657 0.8322 0.8992
Global + Local 0.9305 0.8786 0.8617 0.8955

Our MCDN 0.9456 0.8926 0.8889 0.8963

AUC score. The deep learning based Global Image applied to full AS-OCT im-
ages does not work well with only 0.8941 AUC. A possible reason for this is that
although learned discriminative features are more powerful than handcrafted vi-
sual features, they are learned in this case over the entire AS-OCT image. By
contrast, the Local Region results in performance similar to handcrafted visual
features. For the multi-column deep model [1], the shallow layers can be easier to
optimize, giving better results than visual features. Our MCDN outperforms the
other baselines, demonstrating that the proposed fusion of significant clinical re-
gions is effective for angle-closure glaucoma screening. Moreover, we also observe
that the combination with clinical parameters leads to an obvious improvement,
as the AUC score increases from 0.9305 to 0.9456.

Running Time: We implement our MCDN system using the publicly available
TensorFlow Library. Each stream is fine-tuned from an initialization with the
pre-trained VGG-16 deep model in [14]. The entire fine-tuning phase takes about
5 hours on a single NVIDIA K40 GPU (200 iterations). In testing, it takes 500
ms to output the final screening result for a single AS-OCT image.

4 Conclusion

In this paper, we propose an automatic angle-closure glaucoma screening method
for AS-OCT imagery via deep learning. A multi-context deep network architec-
ture is proposed to learn discriminative representations on particular regions
of different scales. Experiments on a clinical AS-OCT dataset show that our
method outperforms the existing screening methods and other state-of-the-art
deep architectures. Our MCDN architecture arises from the use of clinical prior
knowledge in designing the deep network, and the intensity-based augmentation
can also be used in other OCT-based applications.
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