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Abstract. Given image labels as the only supervisory signal, we focus
on harvesting, or mining, thoracic disease localizations from chest X-ray
images. Harvesting such localizations from existing datasets allows for
the creation of improved data sources for computer-aided diagnosis and
retrospective analyses. We train a convolutional neural network (CNN)
for image classification and propose an attention mining (AM) strategy
to improve the model’s sensitivity or saliency to disease patterns. The
intuition of AM is that once the most salient disease area is blocked or
hidden from the CNN model, it will pay attention to alternative image
regions, while still attempting to make correct predictions. However, the
model requires to be properly constrained during AM, otherwise, it may
overfit to uncorrelated image parts and forget the valuable knowledge
that it has learned from the original image classification task. To allevi-
ate such side effects, we then design a knowledge preservation (KP) loss,
which minimizes the discrepancy between responses for X-ray images
from the original and the updated networks. Furthermore, we modify
the CNN model to include multi-scale aggregation (MSA), improving its
localization ability on small-scale disease findings, e.g., lung nodules. We
experimentally validate our method on the publicly-available ChestX-
ray14 dataset, outperforming a class activation map (CAM)-based ap-
proach, and demonstrating the value of our novel framework for mining
disease locations.

1 Introduction
Automatic analysis of chest X-rays is critical for diagnosis and treatment plan-
ning of thoracic diseases. Recently, several methods applying deep learning for
automatic chest X-ray analysis [8,5,11,14,7] have been proposed. In particular,
much work has focused on the ChestX-ray14 dataset [11], which is an unprece-
dentedly large-scale and rich dataset but only provides image-level labels for the
far majority of the samples. On the other hand, harvesting abnormality loca-
tions in this dataset is an important goal, as that provides an even richer source
of data for training computer-aided diagnosis system and/or performing retro-
spective data analyses. Harvesting disease locations can be conducted through a
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weakly supervised image classification approach [11]; or, in our case we reformu-
late it as a label supervised pattern-mining problem, to gain higher localization
accuracy. Toward this end, we propose an integrated and novel framework that
combines attention mining, knowledge preservation, and multi-scale aggregation
that improves upon current efforts to accurately localize disease patterns.

Recent work on chest X-rays have focused on both classification and lo-
calization. Along with the ChestX-ray14 dataset, Wang et al. [11] also propose
a class activation map (CAM)-based [16] approach using convolutional neural
network (CNNs) to perform weakly supervised disease localization. To improve
image classification accuracy, Rajpurkar et al. [8] introduce an ultra-deep CNN
architecture while Yao et al. [14] design a new learning objective that exploits
dependencies among image labels. Other work investigate methods to automati-
cally generate X-ray reports [4,10]. The proposed framework is a complementary
or orthogonal development from the above advances [8,14] since we mine “free”
disease locations in the form of bounding boxes given image-level labels. It also
can further benefit downstream applications like [4] and [10].

In terms of related work, our attention mining (AM) approach is closely
related to an adversarial erasing scheme proposed in [12] that forces the network
to discover other salient image regions by erasing the most representative area of
the object class in question. In a similar spirit, we propose AM to locate multiple
suspicious disease regions inside a chest X-ray. However, different from [12], AM
drops out corresponding pixels in the activation maps so as to leave the original
X-ray images unchanged. More importantly, AM is designed to seamlessly couple
with multi-label classification, where activation maps are required to be blocked
in a class-wise manner. Next, to alleviate the side effects caused by dropping
out activation maps, we exploit methods to prevent the network from forgetting
its originally learned knowledge on recognizing and localizing disease patterns.
Distilling a network’s knowledge is proposed in [2] to transfer the learned param-
eters from multiple models to a new, typically smaller sized, model. A similar
technique is used in [9] to regularize the CNN model for incremental learning
with new image categories, keeping the network’s output of old image categories
mostly unchanged. In our method, we minimize the `2-distance of output logits
between the original and updated networks to achieve knowledge preservation
(KP). Distinct from [2] and [9], we use the logits not only from the last output
layer but also the intermediate network layers, in order to introduce stronger
regularizations. Finally, we propose a multi-scale aggregation (MSA) because we
notice that the localization accuracy of lung nodules in [11] is not as good as the
other disease findings, which we believe results from the coarse resolution of the
attention maps, i.e., CAMs. Inspired by recent work [6,15] we modify the CNN
to generate attention maps with doubled resolution, improving the detection
performance of small-scale targets.

2 Methods

Our framework is visually depicted in Fig. 1.
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Fig. 1: Architectures of the proposed attention mining (AM), knowledge preser-
vation (KP), and multi-scale aggregation (MSA). Red arrows in the KP module
indicate the path of back-propagation. The convolution parameters for MSA are
shown as (number of filters, kernel size, stride). See Sec. 2 for details.

2.1 Disease Pattern Localization with Attention Mining

Starting from the output of CNN’s last convolutional layer, we denote the feature
map as X ∈ RN×W×H×D, where N , W , H, and D are the mini-batch size, width,
height, and feature map channel, respectively. We then split the classification
layer of the CNN into C branches because feature map erasure is required to be
class specific. For now, we assume a binary erasure mask is available, which is
defined as Mc ∈ RN×W×H×1, where c ∈ C = {1, . . . , C} is the index of a specific
disease type (see Section 3.2 for details to generate Mc). Zeroed regions in Mc

mark spatial regions to drop out of X. For the cth disease, Mc first replicated
across its 4th dimension D times as M̂c, and then the erased feature map is,

X̂c = X � M̂ c, (1)

where � is element-wise multiplication. The new feature map X̂c is then fed into
the cth network branch for binary classification, with the loss defined as,

Lc =
1

N

[
h
(
σ
(

(wc)T g(X̂c)
)
, yc
)]
, (2)

where g(·) is global average pooling (GAP) [16] over the W and H dimensions,
wc ∈ RD×1 is the network parameter of the cth branch, σ(·) is the sigmoid acti-
vation function, yc ∈ {0, 1}N are the labels of class c in a mini-batch, and h(·) is
the cross entropy loss function. Thus, the total classification loss is defined as,

Lcls =
1

C

∑
c∈C

Lc. (3)

While AM can help localize pathologies, the CNN model may overfit to
spurious regions after erasure, causing the model to classify an X-ray by remem-
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bering its specific image part rather than actual disease patterns. We address
this with a knowledge preservation (KP) method described below.

2.2 Incremental Learning with Knowledge Preservation

We explore two methods of KP. Given a mini-batch of N images, a straightfor-
ward way to preserve the learned knowledge is to use only the first n images
for AM and leave the later N − n untouched. If the ratio n/N is set to be small
enough (e.g., 0.125 in our implementation), the CNN’s updates can possibly be
alleviated from overfitting to uncorrelated image parts. We refer to this vanilla
implementation of knowledge preservation as KP-Vanilla.

We investigate a stronger regularizer for KP by constraining the outputs of
intermediate network layers. Our main idea is to make the CNN’s activation to
the later N − n images be mostly unchanged. Formally, we denote the original
network before AM updates as NA and the updated model as NB. Initially, NA

and NB are identical to each other, but NB is gradually altered as it learns to
classify the blocked feature maps during AM. Considering outputs from the kth

layer of NA and NB as XA(k), XB(k) ∈ R(N−n)×W×H×C for the later N −n images,
we define the distance between XA(k) and XB(k) as the `2-distance between their
GAP features as,

Lk =
1

N − n
‖g(XA(k))− g(XB(k))‖2. (4)

When multiple network layers are chosen, the total loss from KP is,

LKP =
1

|K|
∑
k∈K

Lk, (5)

where K is the indices set of the selected layers, and |K| is its cardinality. Finally,
the objective for NB training is a weighted combination of Lcls and LKP ,

L = Lcls + λLKP , (6)

where λ balances the classification and KP loss. Empirically we find the model
updates properly when the value of λLKP is roughly a half of Lcls, i.e., λ = 0.5.

2.3 Multi-Scale Aggregation

Our final contribution uses multi-scale aggregation (MSA) to improve the per-
formance of locating small-scale objects, e.g., lung nodules. Taking ResNet-50 [3]
as the backbone network, we implement MSA using the outputs of the last two
bottlenecks, and refer to the modified network as ResNet-MSA. Given the out-
put of the last bottleneck, denoted as Xk ∈ RN×W/2×H/2×2048, we feed it into a
1× 1 convolutional layer to reduce its channel dimension to 512 and also upsam-
ple its width and height by 2 using bilinear interpolation. The resulting feature
map is denoted as X̄k ∈ RN×W×H×512. Similarly, the output of the penultimate
bottleneck, Xk−1 ∈ RN×W×H×1024, is fed into another 1×1 convolutional layer to
lower its channel dimension to 256, producing X̄k−1 ∈ RN×W×H×256. Finally, we
concatenate them to produce an aggregated feature map X = [X̄k, X̄k−1] for AM.
However, MSA is not restricted to bilinear upsampling, as deconvolution [6] can
also be used for upsampling, where we use 3 × 3 convolutions. However, as our
experiments will demonstrate, the improvements are marginal, leaving bilinear
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as an efficient option. On the other hand, the channel dimensions of Xk and
Xk−1 are largely reduced in order to fit the models into limited GPU memory.

3 Experimental Results and Analysis
The proposed method is evaluated on the ChestX-ray14 dataset [11], which con-
tains 51, 709 and 60, 412 X-ray images of subjects with thoracic and no diseases,
respectively. 880 images are marked with bounding boxes (bboxs) corresponding
to 984 disease patterns of 8 types, i.e., atelectasis (AT), cardiomegaly (CM),
pleural effusion (PE), infiltration (Infiltrat.), mass, nodule, pneumonia (PNA),
and pneumothorax (PTx). We first use the same data split as [11] to train base
models, i.e., ResNet-50, and ResNet-MSA. Later during AM, the 880 bbox im-
ages are then incorporated into the training set to further fine-tune models. We
notice that the AM strategy is originally designed to mine disease locations in
training images. However, for the purpose of conducting quantitative analysis,
we use the bbox images during AM, but only using image labels for training,
while leaving the bboxs aside to evaluate localization results.

For ease of comparison, we use the same evaluation metrics as [11]. Given the
ground truth and the localized bboxs of a disease, its localization accuracy (Acc.)
and average false positive (AFP) is calculated by comparing the intersection over
union (IoU) ratios with a predefined threshold, i.e., T(IoU). Finally, all of our
deep learning implementations are built upon Tensorflow [1] and Tensorpack [13].

3.1 Multiple Scale Aggregation
We first test the impact of MSA prior to the application of AM and KP, im-
plementing the bilinear interpolation and deconvolution variants. We also test
two different input image resolutions: 1024 × 1024 and 512 × 512, where the lat-
ter is downsampled from the original images using bilinear interpolation. Before
applying MSA, we fine-tune the base network ResNet-50 with a learning rate
of 0.1 for 50 epochs. Mini-batch sizes for 1024 and 512 inputs are 32 and 64, re-
spectively. Then, to initialize MSA, we fix the network parameters below MSA
and tune the other layers for 10 epochs. Finally, we have the whole ResNet-MSA
updated end-to-end until the validation loss plot plateaus. Since we mainly fo-
cus on investigating AM and KP, no further modification has been taken for the
network architecture, and thus the ResNet-MSA achieves similar classification
performance as reported in [11] (see supplementary materials for details).

The results of different MSA setups are reported in Table 1, where the
“baseline” refers to the original ResNet-50, the “bilinear” and “deconv.” refer
to ResNet-MSA with bilinear upsampling, and deconvolution operation, respec-
tively. Prefixes denote the input resolution. As can be seen, the 512 variants
perform better than their 1024 counterparts. This is likely because the receptive
field size of the MSA layers with “1024-” input is too small to capture sufficient
contextual information. Note that for the “512-” input, the two MSA configura-
tions outperform the baseline by a large margin for the infiltration, mass, and
nodule categories. This is supporting our design intuition that MSA can help
locate small-scale disease patterns more accurately. Because of the efficiency of
bilinear upsampling, we select it to be MSA variant of choice, which will be
further fine-tuned with AM and KP using Equation (6).
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Table 1: To compare different MSA setups, each table cell show localization Acc.
given T(IoU)=0.3 using all bboxs in B. (See Sec. 3.1 and Sec. 3.2 for details.)

Method AT CM PE Infiltrat. Mass Nodule PNA PTx

512-baseline 0.21 0.81 0.37 0.37 0.21 0.04 0.38 0.35
512-bilinear 0.21 0.62 0.34 0.54 0.35 0.24 0.37 0.29
512-deconv. 0.28 0.55 0.35 0.50 0.32 0.20 0.35 0.27
1024-baseline 0.21 0.19 0.33 0.37 0.35 0.09 0.23 0.09
1024-bilinear 0.11 0.10 0.30 0.30 0.15 0.22 0.05 0.08
1024-deconv. 0.07 0.10 0.23 0.40 0.13 0.01 0.05 0.03

3.2 Disease Pattern Localization with AM and KP

In our implementation, we develop the attention mining (AM) basing on the
class activation map (CAM) approach [16] that obtains class-specific heat maps.
Specifically, the binary erasure mask, Mc is initialized to be all 1, denoted as
Mc

0 . The AM procedure is then iteratively performed T times, and at time step
t, the intermediate CAMs are generated as,

Hc
t = (X � M̂ c

t−1)wc, (7)

where the inner product is executed across the channel dimension. These CAMs
are then normalized to [0, 1] and binarized with a threshold of 0.5. Mc

t is then
updated from Mc

(t−1), except that pixel locations of the connected component
that contains the global maximum of the binarized CAM are now set to 0.

There are different options to generate a final heatmap aggregated from all T
CAMs. We choose to have them averaged. However, when t > 1 regions have been
erased, as per Equation (7). Thus, we fill in these regions from the corresponding
un-erased regions from prior heatmaps. If we define the complement of the masks
as M̄c

t = (1− M̂c
t ), then the final heatmap Hc

f is calculated using

Hc
f =

1

T

T∑
t=1

[
Hc

t +

t−1∑
t′=1

(Hc
t′ � M̄ c

t′)

]
. (8)

Empirically, we find T = 3 works best in our implementation.

Bbox Generation: To convert CAMs into bboxs, we have 3 bboxs generated
from each Hc

f by adjusting the intensity threshold. For image i, the bboxs are
then ranked as {bboxci (1), bboxci (2), bboxci (3)} in descending order based on the
mean Hc

f intensity values inside the bbox areas. These are then arranged into

an aggregated list across all test images from the cth category:
B = {bboxc1(1), . . . , bboxcN (1), bboxc1(2), . . . , bboxcN (2), bboxc1(3), . . . , bboxcN (3)}.

Thereafter, these bboxs are sequentially selected from B to calculate Acc. until
the AFP reaches its upper bound, which is the corresponding AFP value re-
ported in [11]. Here, we choose to generate 3 bboxs from each image as it is
large enough to cover the corrected locations, while an even larger alternate will
greatly increase the AFP value. However, in some cases, Hc

f would just allow to
generate fewer than 3 bboxs, for instance, see Fig. 2(a).

Since Wang et al. [11] were not tackling the disease localization in the way
as data-mining, direct comparison to their results is not appropriate as they
incorporated the bbox images in their test set. Instead, we use our method prior
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Table 2: Comparsion of localization results. The result “#/#” is defined as “our
Acc.-ref. Acc./our AFP-ref. AFP”, where “ref.” is the method for comparison.

T(IoU) AT CM PE Infiltrat. Mass Nodule PNA PTx

Our method compared with baseline (defined in Sec. 3.2)

0.10 0.04/-0.02 -0.02/-0.02 -0.06/-0.02 0.12/-0.02 0.02/-0.01 0.19/-0.01 0.08/-0.02 -0.11/-0.01
0.20 0.09/-0.01 -0.07/-0.01 0.04/-0.02 0.20/-0.02 0.14/-0.01 0.27/-0.02 0.09/-0.01 -0.08/-0.01
0.30 0.14/-0.02 -0.09/-0.02 0.01/-0.01 0.14/-0.02 0.16/-0.02 0.11/-0.02 0.08/-0.02 -0.04/-0.01
0.40 0.15/-0.02 -0.08/-0.02 0.06/-0.02 0.15/-0.01 0.10/-0.02 0.03/-0.02 0.04/-0.02 -0.01/-0.02
0.50 0.07/-0.01 -0.02/-0.02 0.04/-0.02 0.08/-0.02 0.02/-0.02 0.03/-0.02 0.01/-0.01 0.00/-0.02
0.60 0.01/-0.02 0.04/-0.02 0.04/-0.02 0.06/-0.02 0.01/-0.02 0.01/-0.02 0.01/-0.01 0.04/-0.02
0.70 0.00/-0.02 -0.02/-0.02 0.01/-0.02 0.02/-0.02 0.01/-0.02 0.00/-0.02 0.00/-0.01 0.00/-0.02

Our method compared with the reported results in [11]

0.10 -0.01/-0.02 0.03/-0.41 -0.01/-0.02 -0.19/-0.02 0.16/-0.02 0.32/-0.01 0.02/-0.01 0.05/-0.02
0.20 0.03/-0.02 0.22/-0.44 0.07/-0.01 -0.04/-0.02 0.21/-0.01 0.22/-0.01 0.19/-0.01 0.01/-0.02
0.30 0.08/-0.02 0.39/-0.43 0.04/-0.02 0.00/-0.02 0.18/-0.01 0.08/-0.01 0.23/-0.02 0.03/-0.01
0.40 0.13/-0.02 0.45/-0.34 -0.03/-0.02 0.07/-0.02 0.11/-0.01 0.01/-0.01 0.15/-0.02 0.04/-0.01
0.50 0.06/-0.02 0.42/-0.24 -0.01/-0.02 0.06/-0.02 0.06/-0.02 0.01/-0.01 0.14/-0.01 0.05/-0.02
0.60 0.01/-0.02 0.36/-0.09 0.00/-0.02 0.03/-0.02 0.05/-0.02 0.00/-0.01 0.03/-0.02 0.04/-0.02
0.70 0.00/-0.02 0.14/-0.02 -0.01/-0.02 0.02/-0.02 0.01/-0.02 0.00/-0.01 0.01/-0.02 0.00/-0.02

𝐻)# 𝐻+#

𝐻,# 𝐻-#AT

(a) object mined at t = 2

𝐻)# 𝐻+#

𝐻,# 𝐻-#AT

(b) object mined at t = 3

𝐻)# 𝐻+#

𝐻,# 𝐻-#AT

(c) the failure case

Fig. 2: Visualization of heatmaps generated during attention mining. The ground
truth and the automatic bboxs are colored in red and green, respcetively.

to the application of AM steps as the baseline, which is, for all intents and
purposes, Wang et al.’s approach [11] applied to the data-mining problem. It is
presented as the “baseline” method in Table 2. More specifically, it is set up as
the 1st time step of AM with KP-Vanilla and then fine-tuned until it is converged
on the bbox images. As shown in Table 2, our method reports systematic and
consistent quantitative performance improvements over the “baseline” method,
except slightly degrades on the category of CM, demonstrating the impact of our
AM and KP enhancements. Meanwhile, comparing with the results in [11], our
method achieves significant improvements by using no extra manual annotations.
More Importantly, the results in Table 2 indicate our method would also be
effective when implemented to mine disease locations in the training images.

Figure 2 depicts three atelectasis cases visualizing the AM process. As can
be seen, AM improves upon the baseline results, Hc

1 , by discovering new regions
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Table 3: Ablation study of attention mining (AM) and knowledge preservation
(KP). Each table cell shows the Acc. by using all of the bboxs in B (in Sec. 3.2).

T(IoU) Method AT CM PE Infiltrat. Mass Nodule PNA PTx

AM

0.1
t=1 0.57 0.96 0.84 0.78 0.58 0.65 0.66 0.68
t=2 0.65 0.97 0.82 0.77 0.60 0.61 0.72 0.72
t=3 0.68 0.97 0.83 0.79 0.62 0.57 0.73 0.72

0.3
t=1 0.34 0.73 0.47 0.40 0.36 0.33 0.33 0.30
t=2 0.32 0.82 0.47 0.40 0.34 0.25 0.42 0.36
t=3 0.33 0.85 0.48 0.42 0.34 0.20 0.44 0.38

KP

0.1
w/o KP 0.67 1.00 0.48 0.58 0.54 0.47 0.70 0.71

KP-Vanilla 0.65 0.97 0.78 0.87 0.61 0.48 0.73 0.72
KP 0.68 0.97 0.83 0.79 0.62 0.57 0.73 0.72

0.3
w/o KP 0.22 0.99 0.11 0.20 0.20 0.06 0.29 0.34

KP-Vanilla 0.26 0.73 0.41 0.46 0.32 0.10 0.42 0.36
KP 0.33 0.85 0.48 0.42 0.34 0.20 0.44 0.38

after erasing that correlate with the disease patterns. More qualitative results
can be found in the supplementary materials.
Ablation Study: We further investigate the impact of AM and KP. First, we
compare the three steps in AM. Since the erasure map Mc

0 is initialized with
all 1s, then the time step t = 1 is treated as the baseline. Table 3 shows the
localization results at two IoU thresholds, 0.1 and 0.3. As can be seen, significant
improvements of AM are observed in the AT, CM, mass, PNA, and PTx disease
patterns. Next, we compare the KP, KP-Vanilla and an implementation without
KP, where the ResNet-MSA is tuned in AM using only the bbox images. In
particular, we set K by using the outputs of the 3rd and 4th bottleneck, the
MSA, and the classification layers. As Table 3 presents, KP performs better
than KP-Vanilla in the AT, PE, mass, nodule, PNA and PTx categories.

4 Conclusion
We present a novel localization data-mining framework, combining AM, KP, and
MSA. We introduce a powerful means to harvest disease locations from chest X-
ray datasets. By showing improvements over a standard CAM-based approach,
our method can mine localization knowledge in existing large-scale datasets,
potentially allowing for the training of improved computer-aided diagnosis tools
or more powerful retrospective analyses. Future work includes improving the
MSA, possibly by using the atrous convolution [15]. Additionally, we find that
when the activation map fails to localize disease in none of the AM steps, our
method will not locate the correct image region as demonstrated in Figure 2(c).
To address this issue, we may consider semi-supervised learning, like the use of
bboxs in [5], as a complementary means to discover those difficult cases.
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Supplementary Material

Table 4: AUCs of ROC curves for thoracic disease classification for ChestX-
ray14 [11]. All of the results are reported by using ResNet-50 [3] as the base
classification network. We notice the result reported from [5] is given by the
network model that trained without bounding box annotations using the com-
binatorial loss function proposed in [5].
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Li et al. [5] 0.78 0.85 0.79 0.85 0.86 0.89 0.76 0.68 0.66 0.81 0.72 0.75 0.66 0.85
Wang et al. [11] 0.72 0.81 0.71 0.83 0.78 0.81 0.77 0.77 0.61 0.71 0.67 0.71 0.63 0.81
Ours ResNet-50 0.71 0.81 0.70 0.82 0.79 0.89 0.79 0.49 0.66 0.73 0.70 0.74 0.67 0.81
Ours ResNet-MSA 0.75 0.86 0.69 0.83 0.81 0.91 0.80 0.53 0.67 0.80 0.76 0.75 0.70 0.85
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Fig. 3: Attetion mining on cardiomegaly. The automatically mined bounding
boxes are generated from Hc

f and displayed in green. The ground truth bounding
boxes are given with red color. The same color scheme is also applied in the
following figures.
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Table 5: Localization results comparison: This table shows the same localization
results as Table 2 in the main manuscript. Instead of displaying differences,
this table shows the localization performance as “Acc.-AFP”, where “ref.” and
“base.” are presenting the referred method proposed by Wang et al. [11] and
the baseline method presented in Sec. 3.2 in the manuscript, respectively. The
final results of implmenting AM and KP are presented as “ours”. The best
performance, which has the highest Acc. and lowest AFP values, is presented in
bold.

T(IoU) Method AT CM Effusion Infiltra. Mass Nodule PNA PTx

ref. 0.69-0.89 0.94-0.59 0.66-0.83 0.71-0.62 0.40-0.67 0.14-0.61 0.63-1.02 0.38-0.49
0.1 base. 0.55-0.88 0.99-0.08 0.57-0.82 0.47-0.61 0.36-0.65 0.25-0.59 0.73-1.01 0.42-0.48

ours 0.68-0.88 0.97-0.18 0.65-0.82 0.52-0.61 0.56-0.65 0.46-0.59 0.65-1.01 0.43-0.48
ref. 0.47-0.98 0.68-0.72 0.45-0.91 0.48-0.68 0.26-0.69 0.05-0.62 0.35-1.08 0.23-0.52

0.2 base. 0.36-0.97 0.99-0.08 0.33-0.90 0.22-0.67 0.26-0.68 0.09-0.61 0.48-1.07 0.36-0.50
ours 0.51-0.97 0.90-0.28 0.52-0.90 0.44-0.67 0.47-0.68 0.27-0.61 0.54-1.07 0.24-0.50
ref. 0.24-1.40 0.46-0.78 0.30-0.95 0.28-0.72 0.15-0.71 0.04-0.62 0.17-1.11 0.13-0.53

0.3 base. 0.22-1.38 0.96-0.12 0.18-0.93 0.13-0.71 0.19-0.69 0.04-0.61 0.31-1.09 0.21-0.52
ours 0.33-1.38 0.85-0.35 0.34-0.93 0.28-0.71 0.33-0.69 0.11-0.61 0.39-1.09 0.16-0.52
ref. 0.09-1.08 0.28-0.81 0.20-0.97 0.12-0.75 0.07-0.72 0.01-0.62 0.07-1.12 0.07-0.54

0.4 base. 0.12-1.06 0.92-0.15 0.05-0.95 0.02-0.73 0.12-0.71 0.03-0.61 0.17-1.11 0.12-0.53
ours 0.23-1.06 0.73-0.47 0.18-0.95 0.20-0.73 0.18-0.71 0.03-0.61 0.23-1.11 0.11-0.53
ref. 0.05-1.09 0.18-0.84 0.11-0.99 0.07-0.76 0.01-0.72 0.01-0.62 0.03-1.13 0.03-0.55

0.5 base. 0.06-1.07 0.68-0.39 0.02-0.97 0.02-0.74 0.06-0.71 0.01-0.61 0.06-1.12 0.08-0.53
ours 0.11-1.07 0.60-0.60 0.10-0.97 0.12-0.74 0.07-0.71 0.03-0.61 0.17-1.12 0.08-0.53
ref. 0.02-1.09 0.08-0.85 0.05-1.00 0.02-0.76 0.00-0.72 0.01-0.62 0.02-1.13 0.03-0.55

0.6 base. 0.01-1.08 0.48-0.60 0.00-0.99 0.02-0.75 0.04-0.71 0.01-0.61 0.03-1.12 0.06-0.53
ours 0.03-1.08 0.44-0.76 0.05-0.99 0.06-0.75 0.05-0.71 0.01-0.61 0.05-1.12 0.07-0.53
ref. 0.01-1.10 0.03-0.86 0.02-1.01 0.00-0.77 0.00-0.72 0.00-0.62 0.01-1.13 0.02-0.55

0.7 base. 0.00-1.08 0.18-0.84 0.00-0.99 0.01-0.75 0.01-0.71 0.00-0.61 0.01-1.12 0.01-0.53
ours 0.01-1.08 0.17-0.84 0.01-0.99 0.02-0.75 0.01-0.71 0.00-0.61 0.02-1.12 0.02-0.53
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Fig. 4: Attetion mining on pleural effusion.
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Fig. 5: Attetion mining on infiltration.
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Fig. 6: Attetion ming on mass.
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Fig. 7: Attetion ming on nodule.
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Fig. 8: Attetion ming on pneumonia.
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PTx
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Fig. 9: Attetion ming on pneumothorax.
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